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Abstract In this article we study the price of an American style option based on
hedging the underlying assets in discrete time. Like its European style analog, the
value of the option is not given in general by an expectation with respect to an
equivalent martingale measure. We provide the optimal solution that minimizes the
hedging error variance. When the assets dynamics are Markovian or a component
of a Markov process, the solution can be approximated easily by numerical methods
already proposed for pricing American options. We proceed to a Monte Carlo
experiment in which the hedging performance of the solution is evaluated. For assets
returns that are either Gaussian or Variance Gamma, it is shown that the proposed
solution results in lower root mean square hedging error than with traditional delta
hedging.
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e-mail: bruno.remillard@hec.ca

A. Hocquard
Brockhouse Cooper Asset Management, 1250 René-Lévesque Blvd. West, Montréal (Québec),
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1 Introduction

The lack of realism of the assumptions underlying the Black-Scholes formula for
pricing financial derivatives has engendered a large area of research attempting to
address these shortcomings. Most of this literature has focused on the inadequacy
of the normal distribution for modeling assets returns and the consequent poor
performance of Black-Scholes option prices in matching observed market prices.
Several richer structures for return dynamics have been proposed; GARCH volatility
[14], low and high frequency volatility components [10, 16], stochastic volatility
[9,18,19,21], jumps in returns [24], jumps in volatility [1,25], and regimes switching
models [28, 29].

However, a crucial issue for the option writer is the well documented fact that
replicating strategies derived from continuous time processes, but applied in discrete
time, lead to non-zero expected hedging error, see Wilmott [32] for a detailed
discussion. Indeed, an expected hedging error centered at zero requires in this case
continuous trading of the hedging position in the underlying asset, and is thus
impossible in reality.

In incomplete markets, there are an infinity of risk neutral probability measures
and one has to be chosen in order to determine the derivative’s price. It is illumi-
nating to consider this choice from the perspective of an option writer attempting
to hedge his market exposure. His utility is derived from the error realized by
dynamically replicating the derivative’s payoff. In other words, the equivalent
martingale measure implied by observed option prices reflects the option writers’
preference over possible hedging error outcomes. Few papers however have adopted
explicitly this perspective. Pochart and Bouchaud [27] propose a non-parametric
approach in which the value and hedging ratio functions are approximated with
basis functions. This flexible method allows to choose from a wide variety of
loss functions (for example, minimizing the expected hedging error shortfall or the
hedging error value-at-risk).

An asymmetric loss function is intuitively appealing since dealers should
care more about losses than if their replicating portfolio results in over-hedging.
However, the optimal hedging strategies are hard to obtain in these cases and
only numerical approximations have been proposed so far. The minimization of
the variance of hedging errors significantly facilitates analytical treatment. While
a quadratic loss function has also been considered in Bouchaud and Potters [4],
Cornalba et al. [11], and Bouchaud [3], Schweizer [30] derives the optimal
solution when the underlying source of risk is one-dimensional, and Rémillard and
Rubenthaler [29] extend this result to the multi-dimensional case. This generaliza-
tion is particularly useful since derivatives seldom depend on only one source of
risk; the payoff function may depend on multiple assets, and the value is sensitive
to time-varying volatility and interest rates.

We contribute by considering the special case when it is possible for the
option holder to exercise early. Valuing an American option (or more precisely a
Bermudan option since our analysis is cast in discrete time) is complicated by the
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need to determine the optimal exercise rule. The conventional no-arbitrage pricing
approach for American style contingent claims involves taking the supremum of the
expectation of the discounted payoff under a risk neutral measure over a set T of
admissible stopping time

sup
�2T

E Œe�r�f .S� /�

where � is a stopping time, r the risk free rate, S the underlying asset and f .�/ the
payoff function. For more details, see Duffie [15] for an excellent textbook treatment
of the theory of American contingent claim valuation.

One important aspect of our method is that the choice of a risk neutral measure
is bypassed, the variance of hedging error is minimized directly under the objective
measure. It therefore can be ascribed to the literature emphasizing the significance
of agents’ preferences on derivatives pricing. For example, Bates [2] underlines the
importance of risks intermediation by option market makers on contingent claim
valuation, and Garleanu et al. [17] provide an interesting empirical investigation of
the effect of demand on derivatives prices.

Our approach is general enough to accommodate for any well-behaved payoff
functions and most commonly used price processes, as long as it has finite variance.
When the price is Markovian, or the component of a Markov process, the analytical
solution can be implemented using numerical techniques found in the literature. One
only needs an efficient method of estimating conditional expectations, for instance,
the regression based techniques of Carriere [7], Tsitsiklis and Roy [31], Longstaff
and Schwartz [22] or the stochastic mesh approach of Broadie and Glasserman [5].
For the numerical examples presented, we use the deterministic grid method of
Papageorgiou et al. [26].

As an illustration, we apply the optimal solution to the case where assets returns
follow general Lévy processes. These processes provide a rich modeling framework
and have been used extensively over the past decade in the asset pricing literature,
see among others Huang and Wu [20], Chan [8], and Carr and Wu [6].

Furthermore, we show the potential reduction in hedging error variance with
Monte Carlo experiments in which a put option is hedged dynamically. First, we
simulate paths for a geometric Brownian motion with constant volatility. In this
case, the market is complete and the hedging performance can be directly compared
to Black-Scholes delta hedging. It is found that the root mean square hedging error
is strictly lower than delta hedging even as the number of hedging steps increases.
Using n D 250, that is, hedging once a day for a put with 1 year to maturity,
we obtain a RMSE of 0:1081 compared to 0:1151 for delta hedging. The second
experiment uses the Variance Gamma model of Madan et al. [23]. Lower RMSE are
also found in this incomplete market setup.

The next section presents the optimal solution to the variance minimization
problem for a given stopping time, while Sect. 3 examines the choice of stopping
time for an American option. Section 4 discusses in details the application of the
optimal solution to general Lévy processes, and provides numerical examples of the
hedging performance for Gaussian and Variance Gamma returns.
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2 Optimal Hedging of American Options

Let Sk be a d -dimensional vector representing the value of the underlying assets at
period k, and F D fFk; k D 0; 1; : : : ; ng be a filtration under which S is adapted
with F0 D f;; ˝g. Set �k D ˇkSk � ˇk�1Sk�1, k D 1; : : : ; n where the discount
factors ˇk are predictable, i.e. ˇk is Fk�1-measurable 8k 2 f1; : : : ; ng. Assume
further that S is square integrable. Note that since ˇ is a non-negative process
bounded by 1, it is automatically square integrable.

Given a stopping time � , the goal is to find an initial investment amount �0 and a

predictable investment strategy
�!
� D .�k/n

kD1 that minimize the expected quadratic
hedging error

E

�n
H�

�
�0;

�!
�

�o2
�

;

where
Hk D Hk

�
�0;

�!
�

�
D ˇkfk � �k;

�k D �0 C
kX

j D1

�>
j �j ; k D 0; : : : ; n;

and fk is a short notation for the payoff function evaluated at period k, f .Sk/. We
assume further that fk < 1 for all k 2 f0; 1; : : : ; ng.

The proofs of all of the following results are given in Sects. 6, and 7.

Lemma 2.1. Conditions (1)–(2) below are necessary and sufficient conditions for

minimizing E
n
H 2

�

�
v0;

�!
 

�o
.

If��j gE
˚
.ˇ� f� � �� /�j jFj �1

� D 0; j D 1; : : : ; n : (1)

Ef.ˇ�f� � �� /g D 0: (2)

Before solving (1)–(2), one needs to introduce the following definitions. Set
PnC1 D 1, and for k D n; : : : ; 1, define

Ak D E
�
�k�

>
k PkC1jFk�1

�
;

bk D A�1
k E .�kPkC1jFk�1/ ;

ak D If��kgA�1
k E .ˇ�f��kPkC1jFk�1/ ;

Pk D
�Y

j Dk

�
1 � b>

j �j

�
:

Further set ck D E.PkC1jFk/, k D 0; : : : ; n. Under the assumption that Ak is
invertible for all k D 1; : : : ; n, one can prove, as in Rémillard and Rubenthaler [29],
that ck 2 .0; 1�.



Optimal Hedging of American Options in Discrete Time 149

Proposition 2.1. Conditions (1)–(2) are met if and only if, for any j D 1; : : : ; n

If��j g�j D If��j g
˚
aj � �j �1bj

�
; (3)

and �0 satisfies

�0 D I.� D 0/f0 C I.� � 1/E.ˇ�f�P1/=E.P1/: (4)

Furthermore, on f� � j g,

E
˚
.ˇ�f� � ��/jFj �1

� D E
˚
.ˇ�f� � �j /Pj C1jFj �1

�
; (5)

for all j D 1; : : : ; n.

Equation 3 provides the optimal hedging strategy. Finally, one can also define the
“value” process of the option viz.

ˇkCk D E.ˇ�f�PkC1jFk/=ck; k D 0; : : : ; n:

Note that Ck can be interpreted as the amount of money to invest at the risk-free rate
at time k to minimize the hedging error associated with the exercising strategy � . In
particular, the contingent claim’s initial value is given by �0 D C0.

The following relations will be needed.

Proposition 2.2. For all k D 0; : : : ; n � 1,

I.� � k/ˇkCk D I.� D k/ˇkfk C I.� > k/E.ˇ�f�PkC1jFk/=ck;

and
I.� > k/ckˇkCk D I.� > k/EfˇkC1CkC1PkC1jFkg:

3 Choosing a Stopping Time Strategy

Having found the optimal hedging strategy for a given stopping time, one could be

tempted to minimize E

�n
H�

�
�0;

�!
�

�o2
�

over all stopping times. Unfortunately,

one would end up with the trivial solution � � 0 leading to a zero hedging error.
The heuristic solution we propose is to define an optimal stopping time for the

option holder as in the traditional case when working under a risk neutral measure.
More precisely, set PnC1 D 1, and for k D n; : : : ; 1, define
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Ak D E
�
�k�

>
k PkC1jFk�1

�
;

bk D A�1
k E .�kPkC1jFk�1/ ;

Pk D
nY

j Dk

�
1 � b>

j �j

�
;

ck D E.PkC1jFk/;

where the notation P , A, b, and c is used to contrast with the stopping time case
discussed previously. As in Rémillard and Rubenthaler [29], the “value”Vk at period
k of a European style option with payoff Vn at maturity n is given by

ˇkVk D E.ˇnVnPkC1jFk/

ck

; k D 0; : : : ; n:

Vk corresponds to the initial investment at the risk-free rate when forming the
portfolio which minimizes the expected quadratic hedging error at maturity.

By analogy with the solution of the Snell problem, define Zn D fn and

ˇkZk D max

�
ˇkfk;

E.ˇkC1ZkC1PkC1jFk/

ck

�
;

for k D n � 1; : : : ; 0. If ˇkSk is a martingale, then E.�kjFk�1/ D 0 and one can
easily check that P � 1 and bk � 0. Hence

ˇkZk D max fˇkfk; E.ˇkC1ZkC1jFk/g ;

which is the usual formula for the value of an American option. Note that in this
case, we also have Pk � 1 and bk � 0.

Using these insights, we choose the following stopping strategy:

�� D minfj � 0I Zj D fj g:
Clearly �� � n since Zn D fn by construction, and �� is a stopping time.

Note that f�� � kg \ f�� � kg D fZk D fkg \ f�� � kg while f�� > kg D
fZk > fkg \ f�� � kg.

3.1 Implementation of the Stopping Time Strategy

To be able to solve the problem numerically, one assumes that there exists a process
h so that Yk D .Sk; hk/ is Markov. We assume further that fk D fk.Sk/ for all
0 � k � n. For simplicity, suppose that ˇk D .1 C r/�k . It is then easy to check
that Zk D gk.Yk/, with gn D fn, and
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gk�1.y/ D max

"
fk�1.y/;

E
	
gk.Yk/f1 � bk.y/>�kgck.Yk/jYk�1 D y



.1 C r/ck�1.y/

#
; (6)

where cn � 1, and for k D n; : : : ; 1,

Ak.y/ D E
n
�k�

>
k ck.Yk/jYk�1 D y

o
;

bk.y/ D A�1
k .y/E f�kck.Yk/jYk�1 D yg ;

ck�1.y/ D E fck.Yk/jYk�1 D yg � bk.y/>Ak.y/bk.y/:

For more details on these equations, see Rémillard and Rubenthaler [29].
Recall that ck D E.PkC1jFk/, for k D 0; : : : ; n, and cn � 1. It is easy to prove

that

Ak D I.�� < kgA.0; Yk�1/ C I.�� � kgA.1; Yk�1/;

bk D I.�� < kgB.0; Yk�1/ C I.�� � kgB.1; Yk�1/;

ck D I.�� � kg C I.�� > kg�k.Yk/;

where

Ak.0; y/ D E
�
�k�

>
k jYk�1 D y

�
;

Ak.1; y/ D E
n
�k�

>
k IffkDZkgjYk�1 D y

o

CE
n
�k�

>
k Iffk<Zkg�k.Yk/jYk�1 D y

o
;

Bk.0; y/ D A�1
k .0; Yk�1/E .�kjYk�1 D y/ ;

Bk.1; y/ D A�1
k .1; Yk�1/E

˚
�kIffkDZkgjYk�1 D y

�
CA�1

k .1; Yk�1/E
˚
�kIffk<Zkg�k.Yk/jYk�1 D y

�
;

�k�1.y/ D E
˚
IffkDZkgjYk�1 D y

� C E
˚
Iffk<Zkg�k.Yk/jYk�1 D y

�
�Bk.1; y/>Ak.1; y/Bk.1; y/:

One can now find expressions for Ck and ak .

Proposition 3.1. If��>kgCk D Ck.Yk/ and ak D If���kgak.Yk�1/, for some deter-
ministic functions Ck and ak , where, for all k D n; : : : ; 1,

Ck�1.y/ D E
	
IffkDZkgfk

˚
1 � Bk.1; y/>�k

� jYk�1 D y



.1 C r/�k�1.y/

C
E

h
Iffk<ZkgCk.Yk/

˚
1 � Bk.1; y/>�k

�
�k.Yk/jYk�1 D y

i
.1 C r/�k�1.y/

;
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and

ak.y/ D .1 C r/�kA�1
k .1; y/E

˚
IffkDZkgfk�kjYk�1 D y

�
C.1 C r/�kA�1

k .1; y/E
˚
Iffk<Zkg�k�k.Yk/Ck.Yk/jYk�1 D y

�
:

In particular,

an.y/ D .1 C r/�nA�1
n .1; y/E ffn.Sn/�njYn�1 D yg :

Since all deterministic functions are defined as expectations, they can be
approximated using the methodologies proposed in Del Moral et al. [12, 13] and
Papageorgiou et al. [26]. The latter methodology will now be illustrated with some
examples in the next section.

4 Examples of Application

In this section we show how our methodology can be applied to general Lévy
processes, where the returns are independent and identically distributed. Optimal
discrete time and continuous time hedging for European type options were tackled
in Rémillard and Rubenthaler [29]. See also Rémillard et al. [28] for an implemen-
tation in discrete time.

4.1 Lévy Models

For these models, �k D QSk � QSk�1 D QSk�1�k , with �k D eRk � 1, where the
(excess) log-returns Rk are independent and identically distributed (iid for short).
Set 	 D E .�k/ and B D E

�
�2

k

�
. �k is the usual excess return at period k and these

returns are assumed to be independent copies of � with law 
.
For simplicity, assume that Qfk D .1 C r/�kfk. QSk/ and that the process S is

replaced by the discounted process QS .

Note that ck is independent of s and that ck D �n�k , where � D 1 � 	2

B
D

�2

�2C	2 2 .0; 1/, and �2 D var.�/. Moreover,

Ak.s/ D s2Bck; bk.s/ D 	

sB
; k D 1; : : : ; n:

As a result, setting b0 D 	

B
, one has

Pk D
nY

j Dk

�
1 � b0�j

�
:



Optimal Hedging of American Options in Discrete Time 153

Next, setting Qgk.s/ D .1 C r/�kgk.s/, and using (6), one gets

Qgk�1.s/ D max

�
Qfk�1.s/;

Z
Qgkfs.1 C x/g .1 � b0x/

�

.dx/

�
; (7)

for k D n; : : : ; 1, with Qgn D Qfn.

Remark 4.1. Note that under a risk neutral measure, b0 D 0 and Qgk given by (7) is
the value of the option at period k if �� � k.

Next, we have Ak.1; s/ D s2 QAk.1; s/, and Bk.1; s/ D QBk.1; s/=s, where

QAk.1; s/ D
Z

x2If Qfkfs.1Cx/gDQgkfs.1Cx/gg
.dx/

C
Z

x2If Qfkfs.1Cx/g<Qgkfs.1Cx/gg�kfs.1 C x/g
.dx/;

QBk.1; s/ D 1

QAk.1; s/

Z
xIf Qfkfs.1Cx/gDQgkfs.1Cx/gg
.dx/

C 1

QAk.1; s/

Z
xIf Qfk fs.1Cx/g<Qgkfs.1Cx/gg�kfs.1 C x/g
.dx/;

�k�1.s/ D
Z

If Qfkfs.1Cx/gDQgkfs.1Cx/gg
.dx/

C
Z

If Qfkfs.1Cx/g<Qgkfs.1Cx/gg�kfs.1 C x/g
.dx/

� QBk.1; s/2 QAk.1; s/:

Then, we obtain

QCk�1.s/ D 1

�k�1.s/

Z
Iffkfs.1Cx/gDQgkfs.1Cx/gg Qfkfs.1 C x/g

�
n
1 � QBk.1; s/x

o

.dx/

C 1

�k�1.s/

Z
Iffkfs.1Cx/g<Qgkfs.1Cx/gg QCkfs.1 C x/g

�
n
1 � QBk.1; s/x

o
�kfs.1 C x/g
.dx/

and ak.s/ D Qak.s/=s, where
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Qak.s/ D 1

QAk.1; s/

Z
If Qfkfs.1Cx/gDQgkfs.1Cx/gg Qfkfs.1 C x/gx
.dx/

C 1

QAk.1; s/

Z
If Qfkfs.1Cx/g<Qgkfs.1Cx/gg QCkfs.1 C x/g

��kfs.1 C x/gx
.dx/:

4.1.1 Binomial Tree Model

For the well known binomial tree model,

� D
(

Qu D u
1Cr

� 1 with prob. p;
Qd D d

1Cr
� 1 with prob. 1 � p:

We can verify that in this case

Z
Qgkfs.1 C x/g .1 � b0x/

�

.dx/ D q Qgk


su

1 C r

�
C .1 � q/ Qgk


sd

1 C r

�
;

where q D � Qd
Qu� Qd D 1Cr�d

u�d
. Hence, gk is really the value of the American option in

that setting, proving that �� is the well-known optimal stopping strategy.
It is also possible to check that Ck D Zk on f�� � kg and H�� D 0. The proof

is given in Sect. 7.

4.1.2 Implementation

Here, �k D eRk � 1, where the returns Rk are independent observations of R,

with mean 	p D T
n

�
	 � r � �2

2

�
and variance �2

p D T
n

�2. In order to preserve

the monotonicity and convexity properties of the functions Qgk , it is suggested in
Del Moral et al. [13] to generate x1; : : : ; xN with the same law as � D eR � 1 and
set Ob0 D O	

OB and O� D 1 � O	 Ob0, where

O	 D 1

N

NX
iD1

xi ; OB D 1

N

NX
iD1

x2
i :

On a grid fsj I 1 � j � mg, with 0 < s1 < � � � < sm, approximate Qgk�1 defined
in (7) by

Ogk�1.sj / D max

(
Qfk�1.sj /;

1

N

NX
iD1

Ogkfsj .1 C xi /g .1 � Ob0xi /

O�

)
;

where Ogk is linearly interpolated on the grid, except when k D n, where Ogn D Qfn.
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Next, QAk , QBk , �k , QCk and Qak are similarly approximated. More precisely, for all
j D 1; : : : ; m,

bQAk.1; sj / D 1

N

NX
iD1

x2
i If Qfkfsj .1Cxi /gD Ogkfsj .1Cxi /gg

C 1

N

NX
iD1

x2
i If Qfkfsj .1Cxi /g< Ogkfsj .1Cxi /gg O�kfsj .1 C xi /g;

O	k.sj / D 1

N

NX
iD1

If Qfkfsj .1Cxi /gD Ogkfsj .1Cxi /gg

C 1

N

NX
iD1

xi If Qfkfsj .1Cxi /g< Ogkfsj .1Cxi /gg O�kfsj .1 C xi /g;

bQBk.1; sj / D O	k.sj /=
bQAk.1; sj /;

O�k�1.sj / D 1

N

NX
iD1

If Qfkfsj .1Cxi /gD Ogkfsj .1Cxi /gg

C 1

N

NX
iD1

If Qfkfsj .1Cxi /g< Ogkfsj .1Cxi /gg O�kfsj .1 C xi /g

� O	k.sj /2=
bQAk.1; sj /;

bQak.sj / D 1

bQAk.1; sj /

1

N

NX
iD1

If Qfkfsj .1Cxi /gD Ogkfsj .1Cxi /gg Qfkfsj .1 C xi /gxi

C 1

bQAk.1; sj /

1

N

NX
iD1

If Qfkfsj .1Cxi /g< Ogkfsj .1Cxi /gg

�bQC kfsj .1 C xi /g O�kfsj .1 C xi /gxi ;

bQC k�1.sj / D 1

O�k�1.sj /

1

N

NX
iD1

If Qfkfsj .1Cxi /gD Ogkfsj .1Cxi /gg Qfkfsj .1 C xi /g

C 1

O�k�1.sj /

1

N

NX
iD1

If Qfkfsj .1Cxi /g< Ogkfsj .1Cxi /gg

�bQC kfsj .1 C xi /g O�kfsj .1 C xi /g � ak.sj / O	k.sj /

O�k�1.sj /
:
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Example 4.1 (Black-Scholes model). A first experiment consists in comparing
results of an American put evaluation under the Black-Scholes setting with param-
eters r; 	; � , the time scale being expressed in years. It follows that the excess

log-returns are Gaussian, with mean
�
	 � r � �2

2

�
T
n

and variance �2 T
n

. In that case,
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Fig. 1 Implementation results for a Black-Scholes model with n D 5 and n D 22 hedging
periods, N D 50; 000 simulated returns, on an equally spaced grid of m D 2; 001 points, ranging
from S D 80 to S D 120
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since the model is complete, the risk neutral valuation can be used as a benchmark
for the proposed methodology. The values of the parameters are 	 D 0:09,
� D 0:06, T D 1 year, r D 0:05, and K D 100.

Results for the exercising strategy, put values and number of shares at period 0

are given in Fig. 1. For n D 5; 22; 250 hedging periods, statistics of the hedging
errors H� D e�r�f� � �� are given in Table 1, corresponding to 10,000 scenarios.
Estimation of their densities are pictured in Fig. 2. As expected, the chosen measure
of accuracy given by the root mean square error (RMSE) is minimal for the optimal
hedging. Also, because the model is complete, the limiting hedging error should be
zero. The simulation results support that property since the RMSE is decreasing as
n increases.

Example 4.2 (Variance Gamma model). As a second experiment, consider the
simple Variance Gamma model of Madan et al. [23]. Here

Rk D


	 � r � ˇ � �2

2

�
T

n
ˇ�k C �Zk

p
k;

with Zk � N.0; 1/, independent of k has a Gamma distribution with parameters�
˛ T

n
; 1=˛

�
.

For sake of comparisons, the same values for r; 	; � are used. One also set ˛ D 1

and ˇ D 0, so the annual excess log-returns have a Laplace distribution.
Results for the exercising strategy, put values and number of shares at period 0

are given in Fig. 3. For n D 5; 22; 250 hedging periods, statistics of the hedging
errors H� D e�r�f� � �� are given in Table 2, corresponding to 10,000 scenarios.
Estimation of their densities are pictured in Fig. 4. As expected, the chosen measure
of accuracy given by the root mean square error (RMSE) is minimal for the optimal

Table 1 Statistics for hedging errors H� D e�r� f� � �� with 10,000 scenarios for the Black-
Scholes model

Statistic n D 5 n D 22 n D 250

Hedging method Hedging method Hedging method

Optimal Delta Optimal Delta Optimal Delta

Average �0:0093 0:0514 �0:0014 0:0800 0:0176 0:0173

Median �0:0303 0:0288 0:0021 0:0679 0:0068 0:0140

Volatility 0:6338 0:6997 0:3337 0:3570 0:1067 0:1138

Skewness 0:9994 0:2828 �0:1084 0:2235 1:3798 0:2940

Kurtosis 8:8976 4:7343 8:2623 4:5881 17:2701 5:2060

Minimum �2:6930 �2:8857 �2:2118 �1:6005 �0:6897 �0:5562

Maximum 5:4555 4:7989 2:7628 2:0916 1:3398 0:7589

VaR(99%) 2:1448 2:0241 1:0064 1:0983 0:4076 0:3392

VaR(99.9%) 3:4508 2:9906 1:5167 1:4981 0:7864 0:5360

RMSE 0:6339 0:7016 0:3337 0:3659 0:1081 0:1151
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errors in the Black-Scholes
model, for n D 5; 22; 250 and
10,000 scenarios



Optimal Hedging of American Options in Discrete Time 159

80 85 90 95 100 105 110 115 120
0

2

4

6

8

10

12

14

16

18

20

Functions g0  and f0 for exercising put based
 on 5 hedging periods

80 85 90 95 100 105 110 115 120
0

2

4

6

8

10

12

14

16

18

20

Functions g0  and f0 for exercising put based
 on 22 hedging periods

80 85 90 95 100 105 110 115 120
0

2

4

6

8

10

12

14

16

18

20
American put values based on 5 hedging periods

80 85 90 95 100 105 110 115 120
0

2

4

6

8

10

12

14

16

18

20
American put values based on 22 hedging periods

95 100 105 110 115 120
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

95 100 105 110 115 120
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Optimal hedging
Payoff
Risk neutral valuation

Optimal hedging
Payoff
Risk neutral valuation

Optimal hedging
Delta hedging

Optimal hedging
Delta hedging

g0
f0

g0
f0

1  for hedging of an American put when    ∗ 
> 0 1  for hedging of an American put when    ∗ 

> 0

Fig. 3 Implementation results for a Variance Gamma model with n D 5 and n D 22 hedging
periods, N D 50; 000 simulated returns, on an equally spaced grid of m D 2; 001 points, ranging
from S D 80 to S D 120

hedging. Also, because the model is not complete, one cannot expect to achieve
a very small RSME as in the Black-Scholes model. In fact, the results of the
RSME in Table 2 are just slightly bigger than those of a European put option (not
reported) given by 1:12 for the optimal hedging and 1:24 for delta hedging, and
this relative comparison holds whatever n. Even if the optimal hedging prices are
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Table 2 Statistics for hedging errors H� D e�r� f� � �� with 10,000 scenarios for the Variance
Gamma model

Statistic n D 5 n D 22 n D 250

Hedging method Hedging method Hedging method

Optimal Delta Optimal Delta Optimal Delta

Average �0:0036 0:0883 0:0463 0:1580 �0:2765 0:3318

Median �0:2429 �0:3714 �0:1777 �0:3845 �0:4428 �0:2605

Volatility 1:3152 1:4888 1:2697 1:5571 1:3148 1:5749

Skewness 3:4730 4:4748 3:3062 4:1763 1:9516 3:9836

Kurtosis 24:0348 31:2111 24:1017 26:1282 12:8497 24:3123

Minimum �3:0890 �1:6807 �3:5971 �1:3954 �4:1502 �0:7568

Maximum 14:7487 19:1559 16:8558 19:0261 12:6207 18:3323

VaR(99%) 5:4306 6:8277 5:2051 7:4403 4:3733 7:7534

VaR(99.9%) 11:1911 13:3206 10:5964 12:4115 9:2105 13:2278

RMSE 1:3152 1:4914 1:2705 1:5651 1:3436 1:6095

larger than the delta hedging prices, the values of �1 are quite different, as shown
by the bottom graphs. Remember that for most incomplete models, delta hedging is
far from being optimal to evaluate the strategies �k as discussed in Rémillard and
Rubenthaler [29].

5 Conclusion

In this paper we considered the case of a financial derivative with American exercise
feature which is hedged in discrete time. Given our choice of a stopping rule, we
provided the optimal solution that minimizes the variance of the hedging error, and
the price associated with that replicating strategy.

The optimal solution is derived for the general case where assets’ returns are
model by a Lévy process. By augmenting if necessary the underlying assets’
price vector such that it is Markovian, the optimal solution can be approximated
easily using readily available numerical techniques for pricing Bermudan options
previously proposed in the literature.

Finally, the hedging performance is evaluated with a Monte Carlo experiment
where the underlying return dynamics is either Gaussian or Variance Gamma. In
each case, it is shown that the root mean square hedging error is lower with our
scheme than with traditional delta hedging. This result holds even as the number of
hedging steps increases.
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6 Proofs of the Main Results

6.1 Proof of Lemma 2.1

Suppose that
�!
� is the optimal solution and for a fixed j 2 f1; : : : ; ng, let

�!
 be the

strategy defined by  k D 0, k ¤ j , with  j bounded Fj �1-measurable. It follows
that for any � 2 R,

L .�/ D
n
H 2

�

�
�0;

�����!
� C � 

�o

D
j �1X
kD0

E
n
I .� D k/ .ˇkfk � �k/2

o

C
nX

kDj

E

�
I .� D k/

�
ˇkfk � �k � � >

j �j

�2
�

� L .0/ :

As a result,

0 D d

d�
L .�/

ˇ̌
ˇ̌
�D0

D �2

nX
kDj

E
n
I .� D k/ .ˇkfk � �k/ >

j �j

o

D �2E
n
I .� � j / .ˇ�f� � �� / >

j �j

o
:

Since the latter is true for any bounded Fj �1-measurable function  j , and
f� � j g D f� � j � 1gc 2 Fj �1, it follows that conditions (1)–(2) hold true.

On the other hand, if conditions (1)–(2) are met, then it is easy to check that for

any other strategy v0;
�!
 , setting vk D vk�1 C >

k �k , k D 1; : : : ; n, one has

E
n
H 2

�

�
v0;

�!
 

�o
D E

h
fˇ�f� � �� C �� � v�g2

i

D E
n
.ˇ�f� � �� /2

o
C E

n
.�� � v� /2

o

C .�0 � v0/ E f.ˇ� f� � �� /g

C
nX

j D1

E
n
I .� � j / .ˇ�f� � ��/�>

j

�
�j � j

�o

D E
n
H 2

�

�
�0;

�!
�

�o
C E

n
.�� � v� /2

o
;

since f� � j g 2 Fj �1. Hence the result. ut
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6.2 Proof of Proposition 2.1

We start by proving (3) for j D n and then use reverse induction. Note that for all
j D 1; : : : ; n, f� � j g D f� � j � 1gc 2 Fj �1, so (5) obviously holds for j D n

since PnC1 D 1.
As a result,

0 D E fI .� � n/ .ˇ� f� � �� /�njFn�1g
D I .� D n/ E

˚�
ˇnfn � �n�1 � �>

n �n

�
�njFn�1

�
D I .� D n/An .an � �n�1bn � �n/ :

Hence, on f� � ng, �n D an � �n�1bn.
Suppose now that (3)–(5) hold for k D j; : : : ; n. We have to prove that (3)–(5)

also hold for k D j � 1.
First, by the induction hypothesis, on f� � j g, �j D aj � �j �1bj , so

E
n
I .� � j /�>

j �jPj C1jFj �1

o
D I .� � j /�>

j Ajbj

D I .� � j / a>
j Ajbj � �j �1I .� � j /b>

j Ajbj

D I .� � j / E
�
ˇ�f�b

>
j �jPj C1jFj �1

�

��j �1I .� � j / E
�
b>

j �jPj C1jFj �1

�

D E
n
I .� � j /

�
ˇ� f� � �j �1

�
b>

j �jPj C1jFj �1

o
:

Since f� � j � 1g 2 Fj �2 and Pj D 1 on f� D j � 1g, one has

0 D E
˚
I .� � j � 1/ .ˇ� f� � �� /�j �1jFj �2

�
D E

˚
I .� � j / .ˇ�f� � ��/�j �1jFj �2

�
CE

˚
I .� D j � 1/

�
ˇj �1fj �1 � �j �1

�
�j �1jFj �2

�
D E

	
E

˚
I .� � j / .ˇ�f� � ��/�j �1jFj �1

� jFj �2



CE

˚
I .� D j � 1/

�
ˇj �1fj �1 � �j �1

�
�j �1jFj �2

�
D E

˚
I .� � j /

�
ˇ� f� � �j �1

�
�j �1Pj C1jFj �2

�
�E

n
I .� � j /�>

j �j�j �1Pj C1jFj �2

o

CE
˚
I .� D j � 1/

�
ˇj �1fj �1 � �j �1

�
�j �1Pj jFj �2

�
D E

˚
I .� � j /

�
ˇ� f� � �j �1

�
�j �1Pj C1jFj �2

�
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�E
n
I .� � j /

�
ˇ�f� � �j �1

�
b>

j �jPj C1�j �1jFj �2

o

CE
˚
I .� D j � 1/

�
ˇj �1fj �1 � �j �1

�
�j �1Pj jFj �2

�
D E

˚
I .� � j /

�
ˇ� f� � �j �1

�
�j �1Pj jFj �2

�
CE

˚
I .� D j � 1/

�
ˇj �1fj �1 � �j �1

�
�j �1Pj jFj �2

�
D E

˚
I .� � j � 1/

�
ˇ�f� � �j �1

�
�j �1Pj jFj �2

�
;

proving (5) for j � 1.
Furthermore, since f� � j � 1g 2 Fj �2, one has

0 D E
˚
I .� � j � 1/

�
ˇ�f� � �j �1

�
�j �1Pj jFj �2

�
D I .� � j � 1/ E

�
ˇ�f��j �1Pj jFj �2

� � I .� � j � 1/ �j �2E
�
�j �1Pj jFj �2

�
�I .� � j � 1/ E

�
�j �1�

>
j �1Pj jFj �2

�
�j �1

D I .� � j � 1/Aj �1

�
aj �1 � �j �2bj �1 � �j �1

�
:

As a result one must have �j �1 D aj �1 � �j �2bj �1 on f� � j � 1g. Hence one
may conclude that (3)–(5) hold for j D 1; : : : ; n.

In particular, taking j D 1 in (5), and using the condition E .ˇ� f� � �� / D 0,
one gets

0 D I .� � 1/ E .ˇ�f� � ��/ D I .� � 1/ Ef.ˇ� f� � �1/P2g
D I .� � 1/

˚
E .ˇ� f� / � �0E .P2/ � �>

1 A1b1

�

D I .� � 1/
n
E .ˇ�f� / � �0E .P2/ � .a1 � �0b1/> A1b1

o

D I .� � 1/ fE .ˇ�f�P1/ � �0E .P1/g

which completes the proof. ut

6.3 Proof of Proposition 2.2

By definition of Ck ,

I
�
�� > k

�
ckˇkCk D I

�
�� > k

�
E .ˇ��f��PkC1jFk/

D EfI �
�� D k C 1

�
ˇkC1fkC1PkC1jFkg

CEfI �
�� > k C 1

�
ˇ�� f��

�
1 � b>

kC1�kC1

�
PkC2jFkg

D EfI �
�� D k C 1

�
CkC1PkC1jFkg
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CI
�
�� > k C 1

�
Ef�1 � b>

kC1�kC1
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�E .ˇ��f��PkC2jFkC1/ jFkg

D EfI �
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�
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ut

6.4 Proof of Proposition 3.1

First, recall that by definition, Cn D fn on f�� D ng. Next,

If��>n�1gCn�1 D 1

.1 C r/ �n�1 .Yn�1/
E

h
fn .Sn/ f1 � Bn .1; Yn�1/

>�ngjFn�1

i
;

so one can set

Cn�1 .y/ D 1
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E

h
fn .Sn/ f1 � Bn .1; y/>�ngjYn�1 D y

i
:

It follows that An .1; y/ D An .y/, Bn .1; y/ D bn .y/, �n�1 .y/ D cn�1 .y/ and
gn�1 .y/ D Cn�1 .y/.

Next, suppose I .�� > j/ Cj D I .�� > j/ Cj

�
Yj

�
for all j > k. Then
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CIf��>kgE
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;
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proving that I .�� > k/ Ck D I .�� > k/ Cj .Yk/. It follows that I .�� > k/ Ck D
I .�� > k/ Ck .Yk/ for all k D 0; : : : ; n � 1.

Finally,

ak D If���kgA�1
k E .ˇ��f���kPkC1jFk�1/ ;

D If���kgA�1
k .1; Yk�1/ E

˚
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�
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k .1; Yk�1/ E
˚
Iffk<Zkgˇk�k�k .Yk/ Ck .Yk/ jFk�1

�
;

proving that ak D If���kgak .Yk�1/. ut

7 Proof of the Perfect Hedging in the Binomial Tree Model

To prove the first statement, note that it is obviously true for k D n. Suppose now
that it is true for k. One will show that it is also true for k � 1. Since Ck�1 D Qfk�1

on f�� D k � 1g, it suffices to show that QCk�1 D Qgk�1 on f�� > k � 1g.
First, s D s0uj d k�1�j = .1 C r/k , for some j D 0; : : : ; k � 1. It follows

that QAk .1; s/ D p Qu2�1 C .1 � p/ Qd 2�0 for some �0; �1 2 .0; 1�. In fact, �1 D
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D
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�
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:

Note that

1 � QBk .1; s/ Qu D �
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Qd
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Qu � Qd
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p Qu2�1 C .1 � p/ Qd 2�0

and
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p�1 Qu
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�

p Qu2�1 C .1 � p/ Qd 2�0

;

so p�1f1 � QBk .1; s/ Qug=�k�1 .s/ D q and .1 � p/ �0f1 � QBk .1; s/ Qdg=�k�1 .s/ D
1 � q.
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Next, by the induction hypothesis, QCk D Qgk , so

QCk�1 .s/ D p�1 Qgk

�
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1Cr
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�
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�
sd

1Cr

�
on f�� > k � 1g.

To complete, the proof, note that �0 D Qg0 D Z0. Suppose that on f�� � k � 1g,
�k�1 D Zk�1. One has to prove that �k D Zk on f�� � kg.

Next, on f�� > k � 1g, Zk�1 D Qgk�1 .s/ and

Qak .s/ D p Qgk

�
su

1Cr

� Qu�1 C .1 � p/ Qgk

�
sd

1Cr

� Qd�0

p Qu2�1 C .1 � p/ Qd 2�0

:

It follows that �k D Qgk�1 .s/ C fQak � QBk .1; s/ Qgk�1 .s/gQu with probability p, and
�k D Qgk�1 .s/ CfQak � QBk .1; s/ Qgk�1 .s/g Qd with probability 1�p. So, on f�k D Qug,

�k D Qgk�1 .s/ C fQak � QBk .1; s/ Qgk�1 .s/gQu
D Qgk�1 .s/ f1 � QBk .1; s/ Qug C Qak Qu

D fq Qgk


su

1 C r

�
C .1 � q/ Qgk


sd

1 C r

�
gf1 � QBk .1; s/ Qug

CQup Qgk

�
su

1Cr

� Qu�1 C .1 � p/ Qgk

�
sd

1Cr

� Qd�0

p Qu2�1 C .1 � p/ Qd 2�0

D Qgk


su

1 C r

� �
qf1 � QBk .1; s/ Qug C p Qu2�1

p Qu2�1 C .1 � p/ Qd 2�0

�

C Qgk


sd

1 C r

� "
.1 � q/ f1 � QBk .1; s/ Qug C .1 � p/ Qu Qd�0

p Qu2�1 C .1 � p/ Qd 2�0

#

D Qgk


su

1 C r

� 2
4�q

Qd
�

Qu � Qd
�

.1 � p/ �0

p Qu2�1 C .1 � p/ Qd 2�0

C p Qu2�1

p Qu2�1 C .1 � p/ Qd 2�0

3
5

C Qgk


sd

1 C r

�



168 B. Rémillard et al.

�
2
4� .1 � q/

Qd
�

Qu � Qd
�

.1 � p/ �0

p Qu2�1 C .1 � p/ Qd 2�0

C .1 � p/ Qu Qd�0

p Qu2�1 C .1 � p/ Qd 2�0

3
5

D Qgk


su

1 C r

�
:

Similarly, on f�k D Qd g,

�k D Qgk�1 .s/ C fQak � QBk .1; s/ Qgk�1 .s/g Qd
D Qgk�1 .s/ f1 � QBk .1; s/ Qdg C Qak

Qd

D fq Qgk


su

1 C r

�
C .1 � q/ Qgk


sd

1 C r

�
gf1 � QBk .1; s/ Qd g

C Qd p Qgk

�
su

1Cr

� Qu�1 C .1 � p/ Qgk

�
sd

1Cr

� Qd�0

p Qu2�1 C .1 � p/ Qd 2�0

D Qgk


su

1 C r

� "
qf1 � QBk .1; s/ Qdg C p Qu Qd�1

p Qu2�1 C .1 � p/ Qd 2�0

#

C Qgk


sd

1 C r

� "
.1 � q/ f1 � QBk .1; s/ Qd g C .1 � p/ Qd 2�0

p Qu2�1 C .1 � p/ Qd 2�0

#

D Qgk


su

1 C r

� 2
4q

p Qu
�

Qu � Qd
�

�1

p Qu2�1 C .1 � p/ Qd 2�0

C p Qu Qd�1

p Qu2�1 C .1 � p/ Qd 2�0

3
5

C Qgk


sd

1 C r

� 2
4 .1 � q/ p Qu

�
Qu � Qd

�
�1

p Qu2�1 C .1 � p/ Qd 2�0

C .1 � p/ Qd 2�0

p Qu2�1 C .1 � p/ Qd 2�0

3
5

D Qgk


sd

1 C r

�
:

Therefore, �k D Zk on f�� � kg, proving that H�� D 0. ut
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