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ABSTRACT. Wang & Wells [J. Amer. Statist. Assoc. 95 (2000) 62] describe a non-parametric

approach for checking whether the dependence structure of a random sample of censored bivariate

data is appropriately modelled by a given family of Archimedean copulas. Their procedure is based

on a truncated version of the Kendall process introduced by Genest & Rivest [J. Amer. Statist.

Assoc. 88 (1993) 1034] and later studied by Barbe et al. [J. Multivariate Anal. 58 (1996) 197].

Although Wang & Wells (2000) determine the asymptotic behaviour of their truncated process,

their model selection method is based exclusively on the observed value of its L2
-norm. This paper

shows how to compute asymptotic p-values for various goodness-of-fit test statistics based on a

non-truncated version of Kendall’s process. Conditions for weak convergence are met in the most

common copula models, whether Archimedean or not. The empirical behaviour of the proposed

goodness-of-fit tests is studied by simulation, and power comparisons are made with a test proposed

by Shih [Biometrika 85 (1998) 189] for the gamma frailty family.

Key words: empirical process, Kendall’s tau, probability integral transformation, pseudo-

observation

1. Introduction

Due in part to their connection with frailty models in survival analysis (Oakes, 1989, 2001),

Archimedean copulas have become quite popular as a tool for describing the dependence

between two random variables X and Y with continuous marginal distributions F and G,

respectively. Given a random sample (X1, Y1), . . . , (Xn, Yn) with joint cumulative distribution

function

Hðx; yÞ ¼ CfF ðxÞ;GðyÞg; x; y 2 R

there is thus considerable interest in testing whether the unique underlying copula C belongs to

a parametric class C ¼ (C/h
) of Archimedean copulas

C/h
ðu; vÞ � /�1

h f/hðuÞ þ /hðvÞg;

where /h : (0, 1] 7! [0, 1) is a mapping, indexed by a parameter h 2 R, which satisfies the

following conditions:

/hð1Þ ¼ 0; ð�1Þi d
i

dti
/�1
h ðtÞ > 0; i 2 f1; 2g:

Using the fact that the distribution function K of the probability integral transformation

V ¼ H(X, Y) is of the form

� Board of the Foundation of the Scandinavian Journal of Statistics 2006. Published by Blackwell Publishing Ltd, 9600 Garsington

Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden, MA 02148, USA, 2006

doi:10.1111/j.1467-9469.2006.00470.x



Kðh; tÞ ¼ t � /hðtÞ
/0
hðtÞ

; t 2 ð0; 1�

whenever C 2 C, Genest & Rivest (1993) proposed a graphical procedure for selecting an

Archimedean model through a visual comparison of a non-parametric estimate Kn of K with a

parametric estimate K(hn, Æ) obtained under the composite null hypothesis H0 : C 2 C.
In their work, Genest & Rivest (1993) simply defined Kn as an empirical cumulative dis-

tribution function allocating a weight of 1/n to each pseudo-observation

V i ¼
1

n� 1
# j : Xj < Xi; Yj < Yi
� �

:

As for K (hn, Æ), it was obtained by finding the value hn of h such that, underH0, the population

value s (h) ¼ 4E (V ) � 1 of Kendall’s tau matches its standard empirical version, given by

sn ¼ 4 �V � 1, where �V ¼ ðV1 þ � � � þ VnÞ=n. By identifying the pointwise limit of Kendall’s

process
ffiffiffi
n

p fKnð�Þ � Kðh; �Þg, Genest & Rivest (1993) were able to construct confidence bands

to help with the choice of a proper family C. The limit of the process as such was later

identified for arbitrary d-dimensional copulas by Barbe et al. (1996).

Restricting themselves to the bivariate Archimedean case, but allowing for censorship,

Wang & Wells (2000) furthered this work by proposing a goodness-of-fit statistic

Snn ¼
Z 1

n
KnðtÞf g2 dt;

which is a continuous functional of the process

KnðtÞ ¼
ffiffiffi
n

p
fKnðtÞ � Kðhn; tÞg: ð1Þ

In order to avoid technical difficulties related to censorship and unboundedness of the density

k(h, Æ) of K(h, Æ) at the origin, which is common in practice, their statistic involves an arbitrary

cut-off point n > 0. Mimicking the approach of Barbe et al. (1996), they were able to identify

the limit of Kn, and hence that of Snn, even under the presence of censoring. However,

because of an observed bias in a parametric bootstrap procedure they describe for

approximating the variance of Snn, Wang & Wells (2000) ended up recommending that the

selection of a model from a set of Archimedean copula families be based on a comparison of

the raw values of Snn.

This paper extends the work of Wang & Wells (2000) in a number of ways. Expressed in the

simplest of terms, what is proposed here are alternatives to Snn given by

Sn ¼
Z 1

0

KnðtÞj j2kðhn; tÞdt and Tn ¼ sup
0�t�1

KnðtÞj j:

It will be seen that the use of these statistics has several advantages. Specifically:

(a) simple formulas are available for Sn and Tn in terms of the ranks of the observations,

which is not the case for Snn;

(b) the procedures are free of any extraneous constant n, whose selection and influence on the

limiting distribution of Snn were not addressed by Wang & Wells (2000);

(c) the large-sample distribution of Sn and Tn can be found not only for bivariate Archi-

medean copulas, but also in arbitrary dimension d � 2 and for general copulas satisfying

weak regularity conditions;

(d) although the limits are not explicit, a parametric bootstrap procedure which is demon-

strably valid can be used to approximate p-values associated with any continuous func-

tional of Kn, and in particular with Sn and Tn.
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In the course of these developments, an explanation will be given for the bias observed by

Wang & Wells (2000) in their own parametric bootstrap, and a correction will be proposed.

Furthermore, numerical examples will illustrate how a selection procedure based only on the

comparison of raw values of Snn may sometimes lead to models that should be rejected on

the basis of their p-value. Of course, comparing raw values of Sn and Tn could be just as

misleading, whence the importance of the valid parametric bootstrap procedure proposed

herein.

Conditions which ensure the weak convergence ofKn in arbitrary dimension d � 2 are given

in section 2 and verified in section 3 for a number of common copula families, including non-

Archimedean models. In section 4, simple formulas are presented for the goodness-of-fit

statistics Sn and Tn, and the implementation of the parametric bootstrap is discussed. In

section 5, simulations are then used to assess the power of goodness-of-fit tests based on Sn

and Tn. Comparisons are also made there with a statistic proposed by Shih (1998) for testing

the adequacy of the Clayton family of copulas, also known as the gamma frailty model. Two

concrete examples of application of the new procedures are discussed in section 6, and con-

cluding remarks are made in the final section.

While the work of Wang & Wells (2000) was motivated by biostatistical applications in

which data are often censored, the present paper does not address the issue of censorship, as it

arose from modelling issues in actuarial science and finance, where this problem is much less

frequent. For illustrations of copula modelling in the latter fields, see for instance Frees &

Valdez (1998), Klugman & Parsa (1999), Li (2000), Belguise & Lévi (2001, 2002), Cherubini &

Luciano (2002), Embrechts et al. (2002), Hennessy & Lapan (2002), Lauprete et al. (2002),

Dakhli (2004) and van den Goorbergh et al. (2005).

2. Distributional results

Let (X11, . . . ,Xd1), . . . , (X1n, . . . ,Xdn) be n � 2 independent copies of a vector X ¼ (X1, . . . ,Xd)

from some continuous d-variate copula model C ¼ (Ch) with unknown continuous margins

F1, . . . ,Fd. In other words, suppose that the cumulative distribution function H of X is of the

form

Hðx1; . . . ; xdÞ ¼ C F1ðx1Þ; . . . ; FdðxdÞf g;

for some copula C ¼ Ch 2 C, whose parameter h takes its value in an open set O � Rm. It is

not assumed that Ch is Archimedean in the sequel.

Let K(h, t) ¼ PfH(X) � tg, and define its empirical version as

KnðtÞ ¼
1

n

Xn
j¼1

1ðVjn � tÞ; t 2 ½0; 1�

where the Vjn are pseudo-observations defined by

Vjn ¼
1

n

Xn
k¼1

1 X1k � X1j; . . . ; Xdk � Xdj
� �

¼ 1

n

Xn
k¼1

1 R1k � R1j; . . . ; Rdk � Rdj
� �

;

with Rij standing for the rank of Xij among Xi1, . . . ,Xin.

Proposition 1 below identifies the weak limit K of the process Kn defined in (1). The

conditions are sufficient to ensure that the statistics Sn and Tn are continuous functionals of

Kn, whose limits are thus given, respectively, by
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S ¼
Z 1

0

KðtÞj j2kðh; tÞdt and T ¼ sup
t2½0;1�

KðtÞj j: ð2Þ

Hypothesis I

For all h 2 O, the distribution function K(h, t) of H(X) admits a density k(h, t) which is

continuous on O � (0, 1] and such that

kðh; tÞ ¼ o t�1=2 log�1=2�� 1

t

� �� 	

for some � > 0 as t ! 0.

Hypothesis II

For all h 2 O, there exists a version of the conditional distribution of the vector X ¼ (X1, . . . ,Xd)

given H(X) ¼ t such that, for any continuous real-valued function f on [0, 1]d, the mapping

t 7! lðt; f Þ ¼ kðh; tÞE f X1; . . . ;Xdð Þ HðXÞ ¼ tjf g

is continuous on (0, 1] with l(1, f) ¼ k(h, 1) f(1, . . . , 1).

As noted by Barbe et al. (1996) and Ghoudi & Rémillard (1998), these two hypotheses are

sufficient already to imply the weak convergence of Kendall’s process, namely

Kn;hðtÞ ¼
ffiffiffi
n

p
KnðtÞ � Kðh; tÞf g;

to a continuous, centred Gaussian process Kh whose asymptotic covariance function Ch (s, t)

is identified in theorem 1 of Barbe et al. (1996). To guarantee the convergence of the process

Kn, however, it is also necessary to restrict the large-sample behaviour of Hn ¼
ffiffiffi
n

p
hn � hð Þ in

such a way that hn is a �good� estimator of the parameter h.

Hypothesis III

One has (Kn,h, Hn) [ (Kh, H) in D[0, 1] � Rm, and the limit is Gaussian and centred. In the

sequel, R ¼ var(H) and

cðtÞ ¼ ðc1ðtÞ; . . . ; cmðtÞÞ> ¼ cov KhðtÞ;H1f g; . . . ; cov KhðtÞ;Hmf gð Þ>; t 2 ½0; 1�:

The last hypothesis is a technical condition concerning the existence and smoothness of the

gradient of K(h, t) with respect to h, defined as

_Kðh; tÞ ¼ rhKðh; tÞ ¼
@

@h1
Kðh; tÞ; . . . ; @

@hm
Kðh; tÞ

� �>
:

Hypothesis IV

For every given h 2 O, _Kðh; tÞ exists and is continuous for all t 2 [0, 1]. Moreover,

sup
kh?�hk<e

sup
t2½0;1�

_Kðh?; tÞ � _Kðh; tÞ


 

 �! 0 as e ! 0: ð3Þ

This condition is needed in particular to show that Sn is indeed a continuous functional of

Kn. For, whatever t0 2 (0, 1), one has
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Z 1

0

kðhn; tÞ � kðh; tÞj j dt �
Z 1

t0

kðhn; tÞ � kðh; tÞj j dt þ Kðhn; t0Þ � Kðh; t0Þj j þ 2Kðh; t0Þ:

Therefore, hypotheses I, III and IV together imply that the left-hand side converges in

probability to zero. Observe also in passing that if €Kðh; tÞ ¼ rh _Kðh; tÞ, then condition (3) is

verified whenever there exists � > 0 such that

sup
kh?�hk<e

sup
t2½0;1�

€Kðh?; tÞ
�� �� < 1:

Proposition 1

Under hypotheses I–IV, Kn [ K in D[0, 1], where the weak limit K is a continuous, centred

Gaussian process having representation

KðtÞ ¼ KhðtÞ � _Kðh; tÞ>H; t 2 ½0; 1�

and covariance function

Cðs; tÞ ¼ Chðs; tÞ þ _Kðh; sÞ>R _Kðh; tÞ � _Kðh; sÞ>cðtÞ � _Kðh; tÞ>cðsÞ; s; t 2 ½0; 1�:

Proof. Write Kn(t) ¼ Kn,h(t) � Bn(t) with BnðtÞ ¼
ffiffiffi
n

p
Kðhn; tÞ � Kðh; tÞf g for all t 2 [0, 1].

As mentioned already, it follows from hypotheses I and II thatKn,h [ Kh in D[0, 1], whereKh

is the continuous, centred Gaussian process introduced earlier. Furthermore, it is shown in

appendix A that

sup
t2½0;1�

BnðtÞ � _Kðh; tÞ>Hn



 

�!P 0

under hypotheses III and IV. Finally, making use of hypothesis III, one has

Cðs; tÞ ¼ cov KðsÞ;KðtÞf g

¼ cov KhðsÞ;KhðtÞf g þ cov _Kðh; sÞ>H; _Kðh; tÞ>H
n o

� cov _Kðh; sÞ>H;KhðtÞ
n o

� cov _Kðh; tÞ>H;KhðsÞ
n o

¼ Chðs; tÞ þ _Kðh; sÞ>R _Kðh; tÞ � _Kðh; sÞ>cðtÞ � _Kðh; tÞ>cðsÞ:

Thus the proof is complete.

Remark. From the work of Barbe et al. (1996), it is known that

Chðs; tÞ ¼ Kðh; s ^ tÞ � Kðh; sÞKðh; tÞ
þ kðh; sÞkðh; tÞRhðs; tÞ � kðh; tÞQhðs; tÞ � kðh; sÞQhðt; sÞ;

where s ^ t ¼ min(s, t) and for all s, t 2 [0, 1],

Rhðs; tÞ ¼ PfX1 � X2 ^ X3 jHðX2Þ ¼ s;HðX3Þ ¼ tg � st

and

Qhðs; tÞ ¼ PfHðX1Þ � s;X1 � X2 jHðX2Þ ¼ tg � tKðh; sÞ

are defined in terms of mutually independent copies X1, X2 and X3 of X.

A potential candidate for hn is the omnibus rank-based estimator of Genest et al. (1995) or

Shih & Louis (1995), obtained through a maximization of the pseudo-likelihood

Scand J Statist Goodness-of-fit procedures for copula models 5
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Xn
j¼1

log ch
R1j

nþ 1
; . . . ;

Rdj

nþ 1

� �
;

where ch is the density associated with Ch. It follows from example 3.2.1 of Ghoudi &

Rémillard (2004) that provided that ch is smooth enough hypothesis III is automatically

verified when hypotheses I and II hold, so that proposition 1 then holds under hypotheses I, II

and IV only.

In the special case where h is real, another common procedure considered by Wang & Wells

(2000) among others, consists of estimating h by hn ¼ s�1(sn), where s(h) is the multivariate

extension of Kendall’s tau defined by

s ¼ 2d � 1

2d�1 � 1

� �
� 2d

2d�1 � 1

� �Z 1

0

Kðh; tÞ dt; ð4Þ

as in Barbe et al. (1996) or Jouini & Clemen (1996). Assume that the mapping h 7! s(h) has a
continuous non-vanishing derivative

_sðhÞ ¼ � 2d

2d�1 � 1

� �Z 1

0

_Kðh; tÞdt

in O. Redefining

sn ¼
2d � 1

2d�1 � 1

� �
� 2d

2d�1 � 1

� �Z 1

0

KnðtÞdt;

one can see that
ffiffiffi
n

p
sn � sð Þ is related to Kendall’s process Kn,h through the linear

functional

ffiffiffi
n

p
sn � sð Þ ¼ � 2d

2d�1 � 1

� �Z 1

0

Kn;hðtÞdt:

An application of Slutsky’s theorem then implies that, under hypotheses I and II,

Hn ¼
ffiffiffi
n

p
s�1ðsnÞ � h
� �

¼ � 1

_sðhÞ
2d

2d�1 � 1

� �Z 1

0

Kn;hðtÞ dt þ oP ð1Þ

converges in law to

H ¼ � 1

_sðhÞ
2d

2d�1 � 1

� �Z 1

0

KhðtÞdt ¼ jh

Z 1

0

KhðtÞdt;

where

1

jh
¼
Z 1

0

_Kðh; tÞ dt

is assumed to be non-zero. The weak convergence (Kn,h, Hn) [ (Kh, H) required in

hypothesis III is thus immediate, and

cðtÞ ¼ cov KhðtÞ;Hf g ¼ jh

Z 1

0

Chðu; tÞdu

while
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varðHÞ ¼ j2h

Z 1

0

Z 1

0

Chðu; vÞ dudv:

This suggests the following consequence of the main result.

Proposition 2

If h 2 O 	 R is estimated by hn ¼ s�1(sn) and jh is finite, then under hypotheses I, II and IV,

one has Kn [ K, where the weak limit K is a centred Gaussian process having representation

KðtÞ ¼ KhðtÞ � jh _Kðh; tÞ
Z 1

0

KhðvÞdv; t 2 ½0; 1�

and limiting covariance function

Cðs; tÞ ¼Chðs; tÞ þ j2h _Kðh; sÞ _Kðh; tÞ
Z 1

0

Z 1

0

Chðu; vÞdu dv

� jh _Kðh; sÞ
Z 1

0

Chðu; tÞdu� jh _Kðh; tÞ
Z 1

0

Chðu; sÞ du; s; t 2 ½0; 1�:

3. Examples

This section presents a few popular classes of multivariate copulas that satisfy hypotheses I–IV

stated above. The list is by no means exhaustive, of course.

3.1. Archimedean copulas

Copulas are called Archimedean when they may be expressed in the form

Cðu1; . . . ; udÞ ¼ /�1 /ðu1Þ þ � � � þ /ðudÞf g

in terms of a bijection / : (0, 1] ! [0, 1) such that /(1) ¼ 0 and

ð�1Þidi
dxi

/�1ðxÞ > 0; i 2 f1; . . . ; dg: ð5Þ

As shown by Genest & Rivest (1993) in the case d ¼ 2, the generator / can be recovered

from K, since K(t) ¼ t � /(t)//0(t), t 2 (0, 1]. Among the multivariate copula models that fall

into this category (see Nelsen, 1999, Chapter 4), Table 1 presents summary information for

those of Ali et al. (1978), Clayton (1978), Gumbel (1960) and Frank (1979). Note that in this

table, the parameter space O is limited to positive degrees of association, as those are the only

values that can be achieved in all dimensions for Archimedean copulas in general (Marshall &

Olkin, 1988), and for these four models in particular.

One key characteristic of Archimedean copulas is the fact that all the information about the

d-dimensional dependence structure is contained in a univariate generator, /h. From Barbe

et al. (1996),

Kðh; tÞ ¼ t þ
Xd�1

i¼1

ð�1Þi

i!
f/hðtÞgifiðh; tÞ; ð6Þ

where
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fiðh; tÞ ¼
di

dxi
/�1
h ðxÞ






x¼/hðtÞ

;

provided that f/h(t)gifi (h, t) ! 0 as t ! 0 for all i 2 f1, . . . , d � 1g. Note in passing that

fiþ1ðh; tÞ ¼ f1ðh; tÞ
@

@t
fiðh; tÞ; i 2 f1; . . . ; d � 1g: ð7Þ

As a consequence, the moments of Ch are also functions of /h only. In addition, the

multivariate version of Kendall’s measure of association may be computed, in view of (4),

through the formula

s ¼ 1� 2d

2d�1 � 1

� �Xd�1

i¼1

ð�1Þi

i!

Z 1

0

f/hðtÞgifiðh; tÞdt;

which for d ¼ 2 reduces to the well-known expression (Genest & MacKay, 1986; Nelsen, 1999,

section 5.1)

s ¼ 1þ 4

Z 1

0

/hðtÞ
/0
hðtÞ

dt:

Barbe et al. (1996) prove that the four families of copulas listed in Table 1 meet hypotheses

I and II. It is shown in appendices B1–B4 that they also satisfy hypothesis IV for all values of

h 2 O. Explicit expressions for K may also be found there.

3.2. Bivariate extreme-value copulas

It has been known since the work of Pickands (1981) that bivariate extreme-value distributions

have underlying copulas of the form

CAðu; vÞ ¼ exp logðuvÞA logðuÞ
logðuvÞ

� 	� 
;

where the dependence function A, defined on [0, 1], is convex and such that

max(t, 1 � t) � A(t) � 1 for all t 2 [0, 1]. The most common parametric models of bivariate

extreme-value copulas are presented in Table 2. For additional details see, for instance, Tawn

(1988), Capéraà et al. (1997, 2000) or Capéraà & Fougères (2001).

Ghoudi et al. (1998) note that if (U1, U2) is distributed as CA, then

KAðtÞ ¼ P CAðU1;U2Þ � tf g ¼ t � ð1� sÞt log t; t 2 ð0; 1�

Table 1. Families of multivariate Archimedean copulas

Model /h(t) K(h, t) for d ¼ 2 s ¼ g(h) O

Ali–Mikhail–Haq logðð1� hÞ=t þ hÞ
1� h

t þ t2

1� h
1� h
t

þ h

� �

� log
1� h
t

þ h

� �
3h� 2

3h

� 2ð1� hÞ2 logð1� hÞ
3h2

(0, 1)

Clayton
t�h � 1

h
t þ tð1� thÞ

h
h

hþ 2
(0, 1)

Frank log 1�e�h

1�e�ht

� �
t � ð1� ehtÞ

h
log

1� e�h

1� e�ht

� �
1� 4

h
þ 4D1ðhÞ

h
(0, 1)

Gumbel–Hougaard |log t|1/(1�h) t � (1 � h)t log t h (0, 1)

D1ðhÞ ¼ h�1
R h
0

x
ex�1 dx stands for the first Debye function.
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depends only on the population version of Kendall’s measure of association computed as a

function of A through the identity

s ¼ sðAÞ ¼
Z 1

0

tð1� tÞ
AðtÞ dA0ðtÞ:

Thus if two bivariate extreme-value copulas with generators A and A
 are such that s(A) ¼
s(A
), then KA is the same as KA
 and they could not possibly be distinguished by goodness-of-

fit procedures based on the processKn. To avoid the ensuing identifiability issues, suppose that

h is real. There is then no loss of generality in taking h ¼ s and hn ¼ sn. In this case, it can be

checked easily that the conditions of the main result are satisfied. To this end, first note that
_Kðh; tÞ ¼ t log t, so that hypothesis IV trivially holds. As hypothesis I is also readily verified, an

application of proposition 2 implies that

KnðtÞ ¼
ffiffiffi
n

p
KnðtÞ � Kðhn; tÞf g , KðtÞ ¼ KhðtÞ þ 4t log t

Z 1

0

KhðvÞdv:

Furthermore, the limiting covariance function, for which no explicit representation seems

possible, is given by

Cðs; tÞ ¼ Chðs; tÞ þ 16st log s log t
Z 1

0

Z 1

0

Chðu; vÞdu dv

þ 4s log s
Z 1

0

Chðu; tÞ duþ 4t log t
Z 1

0

Chðs; vÞdv:

3.3. Fréchet copulas

These bivariate copulas are mixtures of the independence copula CP(u, v) ¼ uv and of the

upper Fréchet–Hoeffding bound CM(u, v) ¼ min(u, v), that is,

Chðu; vÞ ¼ ð1� hÞuvþ hminðu; vÞ; h 2 ½0; 1�:

Letting f(h, t) ¼ 4t/fI(h, t) þ hg2 and I(h, t) ¼ fh2 þ 4t(1 � h)g1/2, one can show that

Kðh; tÞ ¼ t � t log t þ t log fðh; tÞf g; t 2 ½0; 1�:

See Genest & Rivest (2001) for a proof of this result. Note that f is continuous on [0, 1]2 and

bounded above by 1.

For this model, it is known (see e.g. Nelsen 1999, p. 130) that s ¼ h(h þ 2)/3, and

hence h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3sþ 1

p
� 1. Furthermore, a simple calculation shows that f0(h, t)/f(h, t) ¼

h/ftI(h, t)g, whence the density associated with K(h, t) is given by k(h, t) ¼
� log t þ log ff(h,t)g þ h/I(h,t). The latter function is continuous and since h � I(h, t), one

Table 2. Families of bivariate extreme-value copulas

Model Ah(t) CAh
(u, v) O

Gumbel ht2 � ht þ 1 uv exp �h log u log v
log uv

� �
(0, 1)

Gumbel–Hougaard t
1

1�h þ ð1� tÞ
1

1�h

n o1�h
exp � j log uj

1
1�h þ j log vj

1
1�h

n o1�h
� 

(0, 1)

Galambos 1 � ft�h þ (1 � t)�hg�1/h uv exp [(|log u|�h þ |log v|�h)�1/h] (0, 1)

Generalized

Marshall–Olkin

maxf1 � h1t, 1 � h2(1 � t)g u1�h1v1�h2 min (uh1, vh2) (0, 1)2
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can see at once that it has the appropriate behaviour as t ! 0 for hypothesis I to hold. The

verification of hypothesis IV is deferred to appendix B5.

3.4. Bivariate Farlie–Gumbel–Morgenstern copulas

It is not always necessary to be able to compute K(h, t) explicitly to obtain the weak con-

vergence of Kn,h. Such is the case for the Farlie–Gumbel–Morgenstern system of distributions,

whose members have the form

Chðu; vÞ ¼ uvþ huvð1� uÞð1� vÞ; h 2 ½�1; 1�:

Barbe et al. (1996) show that

kðh; tÞ ¼
Z 1

t
hðh; x; tÞ dx;

where

hðh; x; tÞ ¼ 1

ð1� xÞrðh; x; tÞ þ
1

x
� 1

1� x

� 	
1 t < x � 1ð Þ

and

rðh; x; tÞ ¼
�
f1� hð1� xÞg2 þ 4hð1� xÞ

�
1� t

x

�1=2
:

Although in this model s ¼ 2h/9, there is no explicit expression for

Kðh; tÞ ¼
Z t

0

kðh; sÞ ds ¼
Z t

0

Z 1

s
hðh; x; sÞ dx ds:

Nevertheless, Barbe et al. (1996) prove that k(h, t) satisfies hypothesis I. They further mention

that hypothesis II is verified as well. The proof that hypothesis IV also holds may be found in

appendix B6.

4. Implementation of the goodness-of-fit tests

Straightforward calculations show that

Sn ¼
n
3
þ n

Xn�1

j¼1

K2
n

j
n

� �
K hn;

jþ 1

n

� �
� K hn;

j
n

� �� 	

� n
Xn�1

j¼1

Kn
j
n

� �
K2 hn;

jþ 1

n

� �
� K2 hn;

j
n

� �� 	

and

Tn ¼
ffiffiffi
n

p
max

i¼0;1; 0�j�n�1
Kn

j
n

� �
� K hn;

jþ i
n

� �










� 	
:

Formal testing procedures based on these statistics would consist of rejecting H0 : C 2 C
when the observed value of Sn or Tn is greater than the 100(1 � a)th percentile of its dis-

tribution under the null hypothesis. As implied by formula (2), however, this distribution

depends on the unknown association parameter h, even in the limit.

10 C. Genest et al. Scand J Statist

� Board of the Foundation of the Scandinavian Journal of Statistics 2006.



This fact is illustrated in Table 3, where the 95th percentiles of the distributions of Sn and Tn

are evaluated for Archimedean copulas of Table 1 for some values of s. Of course, the statistic

Snn(hn) of Wang & Wells (2000) suffers from the same limitation, let alone its dependence on

the arbitrary cut-off point n.
To circumvent these methodological issues and obtain an approximate p-value for

either Sn or Tn, one may call on a parametric bootstrap or Monte Carlo testing approach

based on Chn. This is described is section 4.2. As the tests and their distributions only

involve Chn through K(hn, Æ), it may be tempting to base the bootstrap exclusively on

the latter, as done by Wang & Wells (2000). Section 4.1 explains why this shortcut is

inappropriate.

4.1. The parametric bootstrap method in Wang & Wells (2000)

To find an estimate of the variance of their statistic Snn, Wang & Wells (2000) propose

to generate a sample V 

1;n; . . . ; V



n;n, where V 


j;n � Kðhn; �Þ for j 2 f1, . . . , ng, and then to

calculate

K

n ðvÞ ¼

1

n

Xn
j¼1

1 V 

j;n � v

� �
; s
n ¼ �1þ 4

n

Xn
j¼1

V 

j;n; h
n ¼ s�1 s
n

� �

and

S
nn ¼ n
Z 1

n
K

n ðvÞ � K h
n; v

� �� �2
dv:

By repeating the procedure N times, one ends up with values S
nn;1; . . . ; S


nn;N . Wang & Wells

(2000) thus suggest that the variance of Snn could be estimated by the sample variance of

S
nn;1; . . . ; S


nn;N .

Unfortunately, this algorithm is invalid. As shown in appendix C, the empirical boot-

strap process
ffiffiffi
n

p fK

n � Kðh
n; �Þg converges in D[0, 1] to a limit K
 which is independent of

K but generally different in law. Consequently, this bootstrap does not yield a valid

Table 3. Estimation based on 1000 replicates of the 95th percentile of the distribution of the Cramér–von

Mises statistic Sn and the Kolmogorov–Smirnov statistic Tn

Model s

Sn Tn

n ¼ 100 n ¼ 250 n ¼ 1000 n ¼ 100 n ¼ 250 n ¼ 1000

Clayton 0.20 0.1872 0.1589 0.1567 1.0402 0.9725 0.9824

0.40 0.1410 0.1336 0.1278 0.9244 0.9015 0.8805

0.60 0.0992 0.0902 0.0977 0.8563 0.8071 0.7863

0.80 0.0573 0.0518 0.0511 0.6775 0.6578 0.6650

Frank 0.20 0.1515 0.1328 0.1216 0.9743 0.9294 0.9210

0.40 0.1254 0.1186 0.1150 0.8883 0.8614 0.8439

0.60 0.1017 0.0979 0.0975 0.7945 0.7982 0.7875

0.80 0.0591 0.0536 0.0492 0.6410 0.6472 0.6496

Gumbel–Hougaard 0.20 0.1516 0.1266 0.1265 0.9740 0.9431 0.9325

0.40 0.1255 0.1155 0.1117 0.9284 0.8812 0.8737

0.60 0.0946 0.0961 0.0833 0.8033 0.7839 0.8000

0.80 0.0567 0.0550 0.0508 0.6381 0.6573 0.6469
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estimate of the variance of Snn, nor reliable p-values of any goodness-of-fit test based

thereon.

4.2. The parametric bootstrap method based on Chn

In order to compute p-values for any test statistic based on the empirical process Kn, one

requires generating a large number, N, of independent samples of size n from Chn and com-

puting the corresponding values of the selected statistic, such as Sn or Tn. In the former case,

for example, the procedure would work as follows:

Step 1: Estimate h by a consistent estimator hn.
Step 2: Generate N random samples of size n from Chn and, for each of these samples,

estimate h by the same method as before and determine the value of the test

statistic.

Step 3: If S
1:N � � � � � S
N :N denote the ordered values of the test statistics calculated in step 2,

an estimate of the critical value of the test at level a based on Sn is given by

S
bð1�aÞNc:N and
1

N
# j : S
j � Sn
n o

yields an estimate of the p-value associated with the observed value Sn of the statistic.

Here, bxc denotes the integer part of x.

The validity of this approach is established in a companion paper by Genest &

Rémillard (2005). The assumptions needed for the method to work are stated in appen-

dix D.

5. Numerical studies

Simulation studies were conducted to assess the finite-sample properties of the proposed

goodness-of-fit tests for various classes of copula models under the null hypothesis and under

the alternative. Three copula families were used under H0, namely those of Clayton, Frank

and Gumbel–Hougaard. All of them are Archimedean and complete, in the sense that they

cover all possible degrees of positive dependence, as measured by Kendall’s tau. Three com-

plete systems of non-Archimedean copulas were also used as alternatives, namely the Fréchet,

Gaussian and Plackett families. In all models considered, the validity conditions for the

parametric bootstrap are verified.

In each case, 10,000 pseudo-random samples of size n ¼ 250 were generated from the

selected model with a specified value of Kendall’s tau, chosen in the set f0.2, 0.4, 0.6, 0.8g. For
each of these 10,000 samples, the dependence parameter of the copula model under the null

hypothesis was estimated by inversion of Kendall’s tau, that is, by setting hn ¼ s�1(sn). Sta-
tistics Sn, Tn and S0n were then calculated, and their respective p-value was estimated by

generating N ¼ 1000 bootstrap samples from Chn from the copula model under the null

hypothesis, as detailed in steps 1–3 above. The proportion of such p-values that were inferior

to 5% was then determined. As the bootstrap procedure is consistent, this proportion yields an

estimate of the size and power of the test, depending on whether or not the original data are

from the assumed copula family under the null hypothesis.

For the Clayton and Gumbel–Hougaard copulas, the rank-based estimators derived by the

formula hn ¼ s�1(sn) are simply given by
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hn ¼
2sn

1� sn
and hn ¼ sn;

respectively, but the inversion needs to be carried out numerically for Frank’s model. Table 4

shows that the resulting rank-based estimators have reasonably small percent relative bias for

samples of size n ¼ 100 and 250.

5.1. Comparison between Sn, Tn and Snn

Table 5 shows the power and size of Sn and Tn as goodness-of-fit test statistics of the

Clayton, Frank and Gumbel–Hougaard null hypothesis under 24 choices of copula for the

true distribution. Results for the Snn statistic of Wang & Wells (2000) with n ¼ 0 were also

added for comparison purposes. In interpreting these results, it must be kept in mind that

the error associated with the power estimates is larger than might usually be expected under

10,000 replications. This is because the distribution of the observations under the null

hypothesis involves a parameter that must be estimated. Additional variation thus arises

from the use of Chn rather than Ch in the calculation of the p-values associated with the

tests.

Table 5 shows that when the null hypothesis holds true, all three statistics are at the right

level, up to sampling error. Detailed inspection of the results leads to the following additional

insights:

(a) As a general rule, the tests Sn and S0n based on Cramér–von Mises functionals outperform

that which is founded on the Kolmogorov–Smirnov statistic Tn.

(b) All tests appear to distinguish rather easily between the Clayton model and the various

alternatives considered; the best performance is achieved by S0n.

(c) Testing for the Frank or the Gumbel–Hougaard families seems to be more difficult, at least

given the alternatives considered; each of Sn and S0n delivers the best power in roughly

half the cases.

There is also a hint in Table 5 that as the value of s goes from 0 to 1, the power of the three

tests increases, levels off, and ultimately starts decreasing again. This was only to be expected,

as all families considered have independence and the Fréchet–Hoeffding upper bound

M(u, v) ¼u ^ v as their limiting copulas at s ¼ 0 and s ¼ 1, respectively.

Table 4. Percent relative bias of the estimator hn ¼ s�1(sn) based on 10,000 samples of size n ¼ 100 and

n ¼ 250 from the Clayton, Frank and Gumbel–Hougaard models with various degrees of dependence

Model s n ¼ 100 n ¼ 250

Clayton 0.20 3.22 1.98

0.40 3.25 0.95

0.60 2.39 0.93

0.80 2.29 0.98

Frank 0.20 1.57 0.56

0.40 1.26 0.23

0.60 1.10 0.44

0.80 1.28 0.28

Gumbel–Hougaard 0.20 0.12 0.18

0.40 0.07 0.01

0.60 �0.05 0.05

0.80 0.01 0.01
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5.2. Comparison with the test of Shih for the Clayton family

Clayton’s copula is often referred to as the gamma frailty model in the survival analysis

literature. For this specific choice of null hypothesis, two goodness-of-fit tests are already

available, which were developed by Shih (1998) in the bivariate case and by Glidden (1999) for

arbitrary dimension d � 2. It may thus be of interest to compare the power of these specific

test statistics to those of the omnibus procedures based on Sn and Tn.

In attempting to make such comparisons, difficulties were encountered with the imple-

mentation of both Shih’s and Glidden’s procedures. Specifically:

(a) The limiting variance of the test statistic given on p. 198 of Shih (1998) is erroneous; in

fact, her expression tends to �1 as h ¼ 1/g ! 0, while the correct result is 7/9 in the

limiting case of independence. As shown by Genest et al. (2006), the correct expression for

the asymptotic variance should be

18g7 þ 240g6 þ 3001g5 þ 8281g4 þ 9449g3 þ 5171g2 þ 1352gþ 136

3g2ðgþ 1Þ2ð3gþ 1Þ

þ 8ð2gþ 1Þ4

ðgþ 1Þ2
LðgÞ � ðgþ 1Þ4 W0

�
1þ g

2

�
�W0

�1
2
þ g
2

�� 	
� 8ðgþ 1Þð2gþ 1Þ2JðgÞ;

where

Table 5. Percentage of rejection of three different null hypotheses using statistics Sn, Tn or S0n at the 5% level

when n ¼ 250 for various copula alternatives, based on 10,000 replicates

Alternative Model under the null hypothesis

Family s

Clayton Frank Gumbel–Hougaard

Sn Tn S0n Sn Tn S0n Sn Tn S0n

Clayton 0.2 4.6 5.5 4.9 82.2 78.9 73.6 95.3 88.4 94.4

0.4 4.2 4.7 3.6 99.8 99.3 99.6 100.0 99.9 100.0

0.6 4.6 4.2 5.0 100.0 99.9 99.9 100.0 100.0 100.0

0.8 4.7 4.4 5.6 100.0 99.8 100.0 100.0 100.0 100.0

Frank 0.2 47.1 38.9 51.1 4.7 4.3 5.7 24.5 14.7 30.9

0.4 97.1 88.4 97.4 3.7 5.0 5.9 55.8 37.4 65.6

0.6 99.9 98.2 100.0 5.3 4.9 5.7 75.2 54.2 85.7

0.8 100.0 96.2 100.0 4.4 5.4 3.8 89.1 62.3 88.7

Gumbel–Hougaard 0.2 68.4 57.6 80.6 10.6 9.3 25.7 5.1 4.3 5.2

0.4 99.8 97.9 100.0 36.8 24.3 58.4 6.7 5.8 4.3

0.6 100.0 100.0 100.0 69.5 49.5 82.9 4.3 5.4 4.5

0.8 100.0 100.0 100.0 91.2 59.6 89.9 4.4 5.1 4.0

Fréchet 0.2 35.0 21.9 41.8 25.3 22.5 20.1 33.1 26.0 22.3

0.4 81.7 60.2 89.2 52.1 38.4 52.2 54.6 40.9 38.1

0.6 98.0 83.1 98.9 77.2 45.5 76.9 51.7 31.2 45.6

0.8 98.3 86.3 99.4 80.1 30.2 78.5 33.9 8.5 28.6

Gaussian 0.2 33.3 23.7 38.7 9.9 8.9 9.1 29.2 17.9 24.2

0.4 86.9 71.6 90.7 23.6 17.4 23.5 52.4 34.5 47.5

0.6 99.1 92.1 99.8 50.6 37.7 50.4 53.1 36.5 54.6

0.8 100.0 98.0 100.0 76.8 42.6 75.0 41.3 23.1 40.6

Plackett 0.2 49.5 35.1 49.7 5.2 6.4 6.2 20.3 15.7 28.5

0.4 94.0 83.0 95.3 6.3 5.4 7.6 46.5 28.1 48.9

0.6 99.5 94.8 99.8 15.5 10.2 15.7 48.5 31.6 57.5

0.8 99.9 93.5 99.7 36.1 14.6 27.9 40.2 22.9 42.9
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LðgÞ ¼ 1

4g2
hypergeomð½1; 1; g�; ½2gþ 1; 2gþ 1�; 1Þ;

JðgÞ ¼ 1

2g2
hypergeomð½1; 1; g�; ½gþ 1; 2gþ 1�; 1Þ;

and W
0
denotes the trigamma function.

(b) Glidden’s test is overly conservative, especially in cases of weak dependence. This phe-

nomenon, documented by Glidden (1999) himself, hints to the fact that the asymptotic

distribution may be incorrectly approximated by his proposed computational procedure.

In an attempt to reproduce his calculations, it was further discovered that in Glidden’s

paper, many expressions leading to the identification of the limit were themselves incor-

rect. In the formulas for �i and pk on pp. 385–386, for example, one should replace every

instance of Xik‘ by s ^ Xik‘. Furthermore, the expression given for V(h) on top of p. 386

should be the limit of �ð1=nÞ@2‘̂nðhÞ=@h2. Also, a factor of expfĥK̂kðs ^ Xik‘Þg appears to

be missing in the definition of �̂i, on p. 392.

In view of the numerous difficulties encountered in trying to implement Glidden’s test, it

was ultimately decided to restrict attention to the corrected version of Shih’s procedure. The

power of the latter test is compared in Table 6 with those of the tests based on Sn, Tn and S0n.

As might have been expected, differences in power between the four procedures are tenuous in

Table 6. Percentage of rejection of the null hypothesis of Clayton’s copula for tests based on Sn, Tn, S0n and

Shih’s statistic at the 5% level when n ¼ 250 for various copula alternatives, based on 10,000 replicates

Alternative Estimated power

Family s Sn Tn S0n Shih

Clayton 0.20 4.6 5.5 4.9 4.2

0.40 4.2 4.7 3.6 4.2

0.60 4.6 4.2 5.0 4.9

0.80 4.7 4.4 5.6 5.9

Frank 0.20 47.1 38.9 51.1 73.6

0.40 97.1 88.4 97.4 99.9

0.60 99.9 98.2 100.0 100.0

0.80 100.0 96.2 100.0 100.0

Gumbel–Hougaard 0.20 68.4 57.6 80.6 8.8

0.40 99.8 97.9 100.0 37.1

0.60 100.0 100.0 100.0 78.8

0.80 100.0 100.0 100.0 97.3

Fréchet 0.20 35.0 21.9 41.8 36.1

0.40 81.7 60.2 89.2 85.1

0.60 98.0 83.1 98.9 97.2

0.80 98.3 86.3 99.4 98.3

Gaussian 0.20 33.3 23.7 38.7 52.3

0.40 86.9 71.6 90.7 97.3

0.60 99.1 92.1 99.8 100.0

0.80 100.0 98.0 100.0 100.0

Plackett 0.20 49.5 35.1 49.7 70.5

0.40 94.0 83.0 95.3 99.8

0.60 99.5 94.8 99.8 100.0

0.80 99.9 93.5 99.7 100.0
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cases of strong association. When the dependence is weak, however, the (corrected) Shih

statistic turns out to be significantly more powerful than the other three, except when the

alternative is Gumbel–Hougaard.

6. Illustrations

This section presents two applications of the proposed methodology to data sets originally

considered by Frees & Valdez (1998) and by Cook & Johnson (1981, 1986).

6.1. Insurance data

Figure 1 displays the relation between the natural logarithms of an indemnity payment X1

and an allocated loss adjustment expense X2 (comprising lawyers� fees and claim investi-

gation expenses, among others) for 1500 general liability claims. These data were used by

Frees & Valdez (1998), Klugman & Parsa (1999) and Chen & Fan (2005), among others, to

illustrate copula-model selection and fitting in an insurance context. In their analysis, Frees

& Valdez (1998) ignored the censoring present in 34 claims in their visual procedure for the

selection of an appropriate copula model, although they used the full sample in their formal

estimation of the dependence parameter in the Clayton, Frank and Gumbel–Hougaard

copulas. (Although this is irrelevant here, they used generalized Pareto distributions for the

margins.)

For simplicity, the analysis presented in the sequel is limited to the 1466 uncensored

claims. This restriction has little effect on the estimation of the dependence parameters, as

evidenced by a comparison of the numerical estimates obtained by Frees & Valdez (1998)

and Genest et al. (1998) with and without censoring, respectively. For the uncensored

sample, the observed value of Kendall’s tau is 0.3195, which is also the estimate of the

dependence parameter h in the Gumbel–Hougaard model. Frees & Valdez (1998) identified

this model as providing the best fit of the three. Their judgement was based on a visual

comparison of Kn(t) and the parametric distribution functions K(hn, t) corresponding to the

Clayton, Frank and Gumbel–Hougaard dependence structures. The same conclusion was

reached by Genest et al. (1998) and by Chen & Fan (2005) using more formal, pseudo-

likelihood ratio based, procedures.

Log(LOSS)
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A
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E
)
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Fig. 1. Scatter plot of the natural logarithms of the indemnity payment (LOSS) and the allocated loss

adjustment expense (ALAE) for 1500 general liability claims.
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The non-parametric estimator Kn(t) of K(t) is shown in Fig. 2, along with the parametric

curves K(hn, t) corresponding to the Clayton, Frank, and Gumbel–Hougaard models, with hn
estimated in each case through inversion of Kendall’s tau. The graph suggests that the

Gumbel–Hougaard copula is preferable. This conclusion is confirmed by formal tests based on

Sn, Tn and Wang and Wells� statistic Snn with n ¼ 0. The critical points and p-values reported

in Table 7 were derived using N ¼ 10,000 repetitions of the parametric bootstrap procedure

described in section 4.2, which is based on Chn. While the p-values of Sn, Tn and S0n lead to

rejection of the Clayton and Frank dependence structures at the 5% level, they exceed 80% for

the Gumbel–Hougaard model.

Additional evidence in favour of theGumbel–Hougaard extreme-value structure is supplied in

Fig. 3, in which the non-parametric estimator Kn(t) is displayed, along with a global 95% con-

fidence band for each of the three Archimedean models considered. Its limits are of the form

Kðhn; tÞ �
1ffiffiffi
n

p c2nð0:95Þ;

where c2n(0.95) is the 95% quantile of Tn under the null hypothesis, as reported in Table 7.

K
(t

)

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

t

Kn
Clayton
Frank
Gumbel–Hougaard

Fig. 2. Non-parametric estimator Kn(t) for the LOSS and ALAE data, along with three parametric es-

timators K(hn, t) corresponding to the Clayton, Frank and Gumbel–Hougaard copula models, with hn
estimated by inversion of the empirical version sn of Kendall’s tau.

Table 7. Results of the goodness-of-fit tests based on the statistics Sn, Tn and Snn with n ¼ 0 for the data of

LOSS and ALAE insurance data

Model hn

Sn

Tn

S0n Critical value c2n (0.95) p-value (in %)

Clayton 0.939 2.330 0.135 0.0

2.517 0.910 0.0

1.892 0.126 0.0

Frank 3.143 0.244 0.123 0.0

0.903 0.873 3.6

0.330 0.128 0.0

Gumbel–Hougaard 0.319 0.027 0.117 88.8

0.483 0.902 84.0

0.051 0.127 90.2
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6.2. Uranium exploration data

As a second illustration, the analysis of the uranium exploration data set originally considered

by Cook & Johnson (1981, 1986) was revisited. These data consist of 655 chemical analyses

from water samples collected from the Montrose quadrangle of western Colorado (USA).

Concentrations were measured for the following elements: uranium (U), lithium (Li), cobalt

(Co), potassium (K), caesium (Cs), scandium (Sc) and titanium (Ti).

Table 8 shows the values of the test statistics Sn, Tn and S0n for selected pairs of variables,

along with the corresponding p-values. The latter are based on N ¼ 10,000 repetitions of the

parametric bootstrap procedure.

The following observations can be drawn from Table 8:

(a) In the authors� experience, the three tests are generally in agreement, as for the pairs

(U, Li) and (Co, Ti). Occasionally, they lead to different choices of models, as for the pairs

(U, Co), (Li, Sc) and (Cs, Sc).

(b) The p-values associated with the various tests can sometimes differ markedly. This is often

inconsequential, as in the case of the Gumbel–Hougaard copula for the pair (U, Li). In

other occasions, however, the choice of statistic could make a difference between

acceptance and rejection at a given level. At the 5% level, for example, Frank’s model is

acceptable for the pair (Co, Ti), both according to Sn and S0n, but not under Tn. A similar

phenomenon can be observed in the pair (Li, Ti), for which the four models considered

would be accepted at the 15% level if Tn were used, but rejected by the other two statistics.

(c) Although the statistics S0n computed for different models have different distributions, it

can be observed empirically that the model for which the statistic is smallest generally has
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Fig. 3. Non-parametric estimator Kn(t) for the LOSS and ALAE data, along with global 95% confidence

bands based on the Kolmogorov–Smirnov statistic Tn for each of the three Archimedean models con-

sidered: the Clayton (top left panel), the Frank (top right panel), and Gumbel–Hougaard (bottom panel).
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the highest p-value. The pairs (U, Sc) and (Li, Ti) provide counterexamples which might or

might not be due to sampling error. The same phenomenon could be observed for the

statistics Sn and Tn; see, for example, pairs (U, Sc), (Li, Ti) and (Co, Cs).

7. Discussion

The goodness-of-fit procedures proposed herein will be consistent so long as K(t) ¼
PfH(X) � tg assumes different functional forms under the hypothesized copula model and the

true one. As already argued by Wang & Wells (2000) in the case of Snn, such is the case for

bivariate Archimedean copulas, a result which stems from the fact established by Genest &

Rivest (1993) that the Archimedean generator / is completely determined by K. This argument

extends readily to Sn and Tn, or any other continuous functional of the process Kn. It may be

conjectured that this characterization of Archimedean generators extends to arbitrary

dimension d � 2. For, in the light of Equation (6) from Barbe et al. (1996), one can check

easily that y ¼ /�1 is a solution of the differential equation

Table 8. Values taken by the goodness-of-fit statistics Sn, Tn and S0n and associated p-values, for selected

pairs of variables in the uranium exploration data

Pair Model Sn

p-value

(in %) Tn

p-value

(in %) S0n

p-value

(in %)

(U, Li) Ali–Mikhail–Haq 0.0880 22.4 0.6723 43.0 0.0690 33.0

Clayton 0.3328 0.2 1.2329 0.5 0.2175 0.4

Frank 0.0538 52.5 0.5742 67.0 0.0448 74.2

Gumbel–Hougaard 0.1033 14.1 0.6727 42.5 0.1190 5.0

(U, Co) Ali–Mikhail–Haq 0.0836 24.7 0.8328 13.7 0.0679 33.4

Clayton 0.1057 20.6 0.7730 28.3 0.0793 24.7

Frank 0.1099 10.7 0.8614 9.5 0.0862 12.6

Gumbel–Hougaard 0.1448 6.6 0.9307 6.1 0.1351 4.2

(U, Sc) Ali–Mikhail–Haq 0.2344 1.0 1.2362 0.2 0.2077 0.3

Clayton 0.4042 0.2 1.3436 0.2 0.2934 0.1

Frank 0.2285 1.2 1.2402 0.3 0.2140 0.4

Gumbel–Hougaard 0.3203 0.1 1.4487 0.1 0.3470 0.0

(Li, Sc) Ali–Mikhail–Haq 0.1347 6.4 0.9182 5.6 0.0716 26.0

Clayton 0.1120 16.6 0.8083 19.5 0.0891 17.2

Frank 0.1634 3.1 1.0443 1.6 0.0817 16.3

Gumbel–Hougaard 0.2187 0.8 1.1089 0.9 0.1426 1.9

(Li, Ti) Ali–Mikhail–Haq 0.1493 6.0 0.7456 28.1 0.1553 1.8

Clayton 0.1382 10.8 0.7724 29.6 0.1578 3.4

Frank 0.1256 12.0 0.6463 53.0 0.1401 5.2

Gumbel–Hougaard 0.1327 12.1 0.6942 41.8 0.1330 4.9

(Co, Cs) Ali–Mikhail–Haq 0.0926 18.4 0.8172 13.5 0.0677 33.8

Clayton 0.0875 27.9 0.8642 14.1 0.0611 43.2

Frank 0.2372 0.4 0.9941 0.2 0.1657 0.8

Gumbel–Hougaard 0.4300 0.0 1.2421 0.0 0.3516 0.0

(Co, Ti) Ali–Mikhail–Haq 0.6294 0.0 1.5078 0.1 0.5916 0.0

Clayton 0.6916 0.0 1.5009 0.0 0.5437 0.0

Frank 0.0731 23.0 0.9230 2.9 0.0539 48.5

Gumbel–Hougaard 0.2252 0.0 0.9899 1.4 0.2687 0.0

(Cs, Sc) Ali–Mikhail–Haq 0.1087 16.3 0.8675 12.5 0.0851 21.3

Clayton 0.1657 3.0 0.8429 13.0 0.1395 2.1

Frank 0.2382 0.0 1.1769 0.0 0.1320 2.6

Gumbel–Hougaard 0.3732 0.0 1.1256 1.0 0.2657 0.1
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Xd�1

i¼0

ð�1Þi

i!
tiyðiÞðtÞ � Kfh; yðtÞg ¼ 0; ð8Þ

of order d � 1 with boundary conditions y(0) ¼ 1, and tiy(i) (t) ! 0 as t ! 1 for all

i 2 f1, . . . , d � 1g. It follows that if, given K(h, Æ), the solution of (8) is unique up to a scaling

parameter, then the copula Ch associated with K(h, Æ) is unique. In other words, the copula is

uniquely determined by K whenever any two solutions y1 and y2 of the above equation satisfy

y2(t) ¼ y1(at), for some a > 0.

Nevertheless, there are circumstances when goodness-of-fit tests based on the process Kn

will not be consistent. Suppose, for example, that C1 and C2 are two extreme-value copulas

with the same value, s, of Kendall’s tau. In such a case, one would have K(t) ¼
t � (1 � s)t log (t) for both models. Although the process Kn may not have the same

asymptotic distribution accordingly as the data arise from C1 or C2, the limit would be a

centred Gaussian process in both cases. Accordingly, the power of test statistics such as Sn and

Tn, or indeed any other continuous functional of Kn, could not approach 1 as n!1.

One important advantage of the procedures proposed herein is that they are applicable to

situations involving more than two variables. As a brief illustration, the goodness-of-fit of

trivariate Ali–Mikhail–Haq, Clayton, Frank and Gumbel–Hougaard copula models was

checked on the triplet (Li, K, Ti).

Table 9 summarizes the results of the tests based on statistics Sn and Tn with d ¼ 3. The

p-values associated with the Frank and Gumbel–Hougaard dependence structures clearly

lead to the rejection of those models. The Ali–Mikhail–Haq copula is also rejected at the

5% level by the Kolmogorov–Smirnov test. And indeed, for these three models, it may also

be checked graphically (figures not provided) that the non-parametric estimator Kn lies in

part outside the global 95% confidence band, while Kn lies inside the global 95% confidence

band for the Clayton copula (Fig. 4). There is thus no evidence to conclude that formula

Chðu; v;wÞ ¼ u�h þ v�h þ w�h � 2
� ��1=h

; h > 0 ð9Þ

should be discarded as a potential model for these data.

In subsequent work, it would be of interest to extend the set of copulas for which

hypotheses I–IV are met. Because of their popularity in survival data analysis, where their

mixture representation allows them to be viewed as a natural extension of Cox’s propor-

tional hazards model (Oakes, 2001), multiparameter Archimedean models such as those

considered by Joe (1997) and Genest et al. (1998) should probably be considered first. For

the (Li, K, Ti) data considered just above, for example, it may well be that a multiparameter

Table 9. Results of the goodness-of-fit tests based on the Cramér–von Mises and Kolmogorov–Smirnov

statistics Sn and Tn for the trivariate data involving concentrations of lithium, potassium and titanium

Model hn

Sn

Tn Critical value p-value (in %)

Ali–Mikhail–Haq 0.242 1.106 1.370 14.8

2.184 2.154 4.3

Clayton 0.122 0.264 0.837 50.8

1.225 1.911 47.2

Frank 0.548 1.140 0.724 0.6

2.193 1.702 0.5

Gumbel–Hougaard 0.055 1.347 0.656 0.0

2.235 1.645 0.2
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copula model with different Clayton margins for different pairs of variables (see e.g.

Bandeen-Roche & Liang, 1996) might be more appropriate than the somewhat restrictive

dependence structure (9).
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Appendix A: A convergence result

This appendix offers a proof of the fact that under hypotheses III and IV given in section 2,

the process BnðtÞ ¼
ffiffiffi
n

p fKðhn; tÞ � Kðh; tÞg is such that

sup
t2½0;1�

BnðtÞ � _Kðh; tÞ>Hn



 

�!P 0:

To see this, let k > 0 be arbitrary. By hypothesis III, the sequence (Hn) is tight as it

converges in law to H. Hence for any given d > 0, there exist M ¼ Md 2 Rþ and N0 such that

P(jjHnjj > M) < d for all n � N0. For any such n, one has

P sup
t2½0;1�

BnðtÞ � _Kðh; tÞ>Hn



 

 > k

( )

� P sup
t2½0;1�

BnðtÞ � _Kðh; tÞ>Hn



 

 > k; jjHnjj � M

( )
þ P jjHnjj > Mð Þ

< P sup
t2½0;1�

BnðtÞ � _Kðh; tÞ>Hn



 

 > k; jjHnjj � M

( )
þ d:

Next, the mean-value theorem implies that for any realization of Hn, there exists h
n with

jh
n � hj � jHnj=
ffiffiffi
n

p
such that BnðtÞ ¼ _Kðh
n; tÞ

>Hn. Hence, using hypothesis IV, one obtains

lim
n!1

P sup
t2½0;1�

BnðtÞ � _Kðh; tÞ>Hn



 

 > k; jjHnjj � M

( )

� lim
n!1

P jjHnjj sup
t2½0;1�

jj _Kðh
n; tÞ � _Kðh; tÞjj > k; jjHnjj � M

( )

� lim
n!1

P sup
jjh
�hjj�M=

ffiffi
n

p sup
t2½0;1�

jj _Kðh
; tÞ � _Kðh; tÞjj > k
M

( )
¼ 0:

As d can be chosen arbitrarily small, the result follows.

Appendix B: Verification of hypothesis IV for various copula models

B1. Ali–Mikhail–Haq copulas

In view of relation (7), fi(h, t) is a polynomial in t with coefficients that are non-negative

whenever h 2 (0, 1), so that
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/�1
h ðxÞ ¼ 1� h

e�xð1�hÞ � h
; x > 0

satisfies condition (5) for every integer d � 1, and hence is completely monotone. It is easy to

see that

Kðh; tÞ ¼ t þ t
Xd�1

i¼1

piðh; tÞ
ð1� hÞi

log
1� h
t

þ h

� �� 	i

;

where pi (h, t) ¼ fi (h, t)/t is also a polynomial in both h and t. Then

_Kðh; tÞ ¼ t
Xd�1

i¼1

ð1� hÞ _piðh; tÞ þ ipiðh; tÞ
ð1� hÞiþ1

log
1� h
t

þ h

� �� 	i

� tð1� tÞ
1� hþ ht

Xd�1

i¼1

ipiðh; tÞ
ð1� hÞi

log
1� h
t

þ h

� �� 	i�1

is continuous on (�1, 1) � [0, 1]. Hence (3) holds for all h 2 (�1, 1).

Note, however, that hypothesis IV does not generally hold at h ¼ 1. In the case d ¼ 2, for

example,

0 ¼ lim
h!1

lim
t!0

_Kðh; tÞ 6¼ lim
t!0

lim
h!1

_Kðh; tÞ ¼ 1

2
:

B2. Clayton copulas

First, it is easily seen that

fi;hðtÞ ¼
di

dsi
/�1
h ðsÞ






s¼/hðtÞ

¼ ð�1Þiqðh; i; 1Þt1þih;

where qðh; i;mÞ ¼
Qi�1

j¼0ðmþ jhÞ is a polynomial of degree i � 1 in h. It then follows that

Kðh; tÞ ¼ t þ t
Xd�1

i¼1

1� th

h

� �i
qðh; i; 1Þ

i!
and kðh; tÞ ¼ 1� th

h

� �d�1
qðh; d; 1Þ
ðd � 1Þ! :

Now since

Z 1

0

t 1� th
� �i

dt ¼ Cð2=hÞi!
hCð2=hþ iþ 1Þ ¼

hiþ1i!

h
Qi

j¼0ð2þ jhÞ
¼ hii!

qðh; iþ 1; 2Þ ;

one has, according to formula (4),

sðhÞ ¼ 1� 2d

2d�1 � 1

� �Xd�1

i¼1

qðh; i; 1Þ
qðh; iþ 1; 2Þ ¼

2d

2d�1 � 1

� �
qðh; d; 1Þ
qðh; d; 2Þ �

1

2d�1 � 1
:

Writing log qðh; i;mÞ ¼
Pi�1

j¼0 logðmþ jhÞ, it follows that
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q0ðh; i;mÞ ¼ qðh; i;mÞ
Xi�1

j¼1

j
mþ jh

� �

and

_kðh; tÞ ¼ kðh; tÞ
Xd�1

j¼1

j
1þ jh

 !
� 1� th

h

� �d�2
qðh; d; 1Þ
ðd � 2Þ!

th

h
log t þ 1� th

h2

� �
;

which is clearly continuous for (0, 1) � [0, 1].

Note that in this case, hypothesis IV also holds true at the boundary value h ¼ 0. For,

lim
h!0þ

_Kðh; tÞ ¼ �tð� log tÞd

2ðd � 2Þ! ;

so that

_Kðe; tÞ þ tð� log tÞd

2ðd � 2Þ! ¼ F ðe; tÞ
ed

;

where

F ðe; tÞ ¼ t
Xd�1

i¼1

ed�i�1ð1� teÞi�1

ði� 1Þ! te � ete log t � 1þ eð1� teÞ
i

Xi�1

j¼1

j
1þ je

( )
þ tð�e log tÞd

2ðd � 2Þ! :

Next, in view of the general fact that

dp

dep
f ðeÞgðeÞhðeÞ ¼

Xp
k¼0

Xk
‘¼0

p
k

� �
k
‘

� �
f ð‘ÞðeÞgðk�‘ÞðeÞhðpþ1�kÞðeÞ;

and since

@d

@ed
ð1� teÞi ¼ ðlog tÞd

Xi
k¼1

i
k

� �
ð�teÞkkd

is continuous and bounded for all (e, t) 2 [0, 1]2, one finds that

F ðdþ1Þðe; tÞ ¼ @dþ1

@edþ1
F ðe; tÞ

is bounded by a constant M > 0 on the unit square. Hence

sup
ðe;tÞ2½0;1�2

F ðe; tÞj j ¼
Z e

0

Z udþ1

0

� � �
Z u2

0

F ðdþ1Þðu1; tÞdu1 � � � dudþ1










 � edþ1M

ðd þ 1Þ! :

Therefore

lim
e!0

sup
t2½0;1�

F ðe; tÞ
ed










 � lim

e!0

eM
ðd þ 1Þ! ¼ 0:

Consequently, hypothesis IV is satisfied for all h 2 (0, 1), as well as at the boundary value

h ¼ 0.
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B3. Frank copulas

In the light of an observation made in section 2, and from the fact that

€Kðh; tÞ


 

 � Z t

0

€kðh; sÞ


 

ds � Z 1

0

€kðh; sÞ


 

ds;

it suffices to show that €kðh; sÞ is uniformly bounded for all h 2 O and s 2 [0, 1] in order to

verify hypothesis IV. For that purpose, introduce the continuous and bounded function

wðxÞ ¼ log
1� e�x

x

� �
; x > 0

so that /h(t) ¼ w(h) � w(ht) � log t. Next, let p0(x) ¼ x � 1 and piðxÞ ¼ xð1� xÞp0i�1ðxÞ for

arbitrary integer i � 1. With this notation, the formula already derived by Barbe et al. (1996)

can be written as

kðh; sÞ ¼ ehtp0d�2ðehtÞ
flog t þ wðhtÞ � wðhÞgd�1

ðd � 1Þ! ; h � 0:

One can show that

€kðh; sÞ

¼ s _kðh; sÞ þ s2 e2hs

ðd � 1Þ! flog sþ wðhsÞ � wðhÞgd�1 2p00d�2ðehsÞ þ ehsp000d�2ðehsÞ
� �

þ s ehs

ðd � 2Þ! flog sþ wðhsÞ � wðhÞgd�2fsw0ðhsÞ � w0ðhÞgf2 ehsp00d�2ðehsÞ þ p0d�2ðehsÞg

þ ehsp0d�2ðehsÞ
ðd � 3Þ! flog sþ wðhsÞ � wðhÞgd�3fsw0ðhsÞ � w0ðhÞg2

þ ehsp0d�2ðehsÞ
ðd � 2Þ! flog sþ wðhsÞ � wðhÞgd�2fs2w00ðhsÞ � w00ðhÞg

is bounded for all (h, s) 2 (�1, 1) � [0, 1] since both w0 and w00 are bounded and

_kðh; sÞ ¼ skðh; sÞ þ s e2hsp00d�2ðehsÞ
ðd � 1Þ! flog sþ wðhsÞ � wðhÞgd�1

þ ehsp0d�2ðehsÞ
ðd � 2Þ! flog sþ wðhsÞ � wðhÞgd�2fsw0ðhsÞ � w0ðhÞg:

B4. Gumbel–Hougaard copulas

This copula also belongs to the family of extreme-value copulas, further discussed in sec-

tion 3.2. From Barbe et al. (1996),

kðh; tÞ ¼ pd�1ð� log tÞ
ðd � 1Þ! ;

where p0(x) � 1 and for integer i � 1,

piðxÞ ¼ ð1� hÞx pi�1ðxÞ � p0i�1ðxÞ
� �

þ ðhþ i� 1Þpi�1ðxÞ

is a polynomial of degree i in x and in h. This corrects a typographical error on p. 207 of Barbe

et al. (1996), where one should have read

piðxÞ ¼ hx pi�1ðxÞ � p0i�1ðxÞ
� �

þ ði� hÞpi�1ðxÞ

in the parametrization used there.
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Writing pd�1ðxÞ ¼
Pd�1

k¼0 rkðhÞxk , one may thus conclude that

Kðh; tÞ ¼
Z t

0

kðh; sÞ ds ¼
Xd�1

k¼0

rkðhÞ
ðd � 1Þ!

Z t

0

ð� log sÞk ds ¼ t
ðd � 1Þ!

Xd�1

k¼0

k rkðhÞ
Xk
i¼0

ð� log tÞi

i!
;

so that

_Kðh; tÞ ¼ t
ðd � 1Þ!

Xd�1

k¼0

k!r0kðhÞ
Xk
i¼0

ð� log tÞi

i!

is clearly continuous on [0, 1]2.

B5. Fréchet copulas

Note that for copulas in this class, one has

_Kðh; tÞ ¼ t
_fðh; tÞ
fðh; tÞ ¼ �2

t
Iðh; tÞ þ 4

t2

Iðh; tÞfIðh; tÞ þ hg ¼ �2
t

Iðh; tÞ þ
tfðh; tÞfIðh; tÞ þ hg

Iðh; tÞ :

It is easy to check that t/I (h, t) is continuous on [0, 1]2, whence hypothesis IV holds true on

O ¼ (0, 1). To see that the latter is also verified at h ¼ 1, note that _Kðh; tÞ ! �t as h ! 1.

Putting d ¼ 1 � e, one gets _Kðe; tÞ þ t ¼ F ðd; tÞ=d, where

F ðd; tÞ ¼ t dþ 1� dþ 1

Ið1� d; tÞ

� 	
:

It can easily be shown that

sup
ðd;tÞ2½0;1Þ�½0;1�

€Kðd; tÞ


 

 ¼ sup

ðd;tÞ2½0;1Þ�½0;1�

4tð1� 3tÞ þ 4dtðdþ t � 3Þ � 4ðd� 1Þ2
n o

t

I1�d;t
� �5=2
















is bounded above by some constant M. Thus,

sup
ðd;tÞ2½0;1Þ�½0;1�

F ðd; tÞj j ¼ sup
ðd;tÞ2½0;1Þ�½0;1�

Z d

0

Z v

0

F ðu; tÞ du dv










 � d2M
2

;

which implies that sup (d,t) 2 [0,1)�[0,1]|F(d, t)/d| � dM/2 ! 0 as e ¼ 1 � d ! 1.

B6. Farlie–Gumbel–Morgenstern copulas

Here, one has

_Kðh; tÞ ¼
Z t

0

Z 1

s

_hðh; x; sÞdx ds ¼ �
Z t

0

Z 1

s

_rðh; x; tÞ
ð1� xÞfrðh; x; tÞg2

dx ds

¼
Z t

0

Z 1

s

f1� hð1� xÞg � 2 1� s=xð Þ
frðh; x; tÞg3

" #
dx ds:

Now for arbitrary h1, h2 2 (�1 þ d, 1 � d) for fixed 0 < d < 1, one finds
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_Kðh2; tÞ � _Kðh1; tÞ


 

 ¼ Z t

0

Z 1

s
2 1� s

x

� �
� 1

n o 1

frðh2; x; sÞg3
� 1

frðh1; x; sÞg3

" #
dx ds







þ
Z t

0

Z 1

s
ð1� xÞ h2

frðh2; x; sÞg3
� h1
frðh1; x; sÞg3

" #
dx ds







� 3

Z 1

0

Z 1

s

1

frðh2; x; sÞg3
� 1

frðh1; x; sÞg3












 dx ds

þ
Z 1

0

Z 1

s

h2
frðh2; x; sÞg3

� h1
frðh1; x; sÞg3












 dx ds

� 4

Z 1

0

Z 1

s

1

frðh2; x; sÞg3
� 1

frðh1; x; sÞg3












 dx ds

þ jh2 � h1j
Z 1

0

Z 1

s

1

frðh2; x; sÞg3
dx ds:

As r(h, x, s) � 1 � |h| > d, the second summand is bounded above by |h2 � h1|/d
3. To

handle the first summand, note that rðh; x; sÞ �
ffiffiffi
8

p
and j_rðh; x; sÞj � 4=d. It follows that

frðh2; x; sÞg3 � frðh2; x; sÞg3



 


 ¼ 3

Z h2

h1

frðh; x; sÞg2 _rðh; x; sÞdh










 � 96

d
jh2 � h1j:

Therefore,

1

frðh2; x; sÞg3
� 1

frðh1; x; sÞg3












 � 96

d7
jh2 � h1j;

so the first summand is bounded by 384|h2 � h1|/d
7. Hence hypothesis IV is satisfied for all

h 2 O ¼ (0, 1).

Appendix C: Asymptotic behaviour of the parametric bootstrap method of Wang & Wells

(2000)

Without loss of generality, one may assume that h ¼ s. To show that the suggested method-

ology is incorrect, even in the uncensored case, let U1, . . . ,Un be independent uniformly

distributed random variables in (0, 1) and for a given value sn, set V 

j;n ¼ K�1

sn ðUjÞ. Then V 

j;n has

distribution K(sn, Æ).
For simplicity, set _KðuÞ ¼ @Kðs; uÞ=@s, K (Æ) ¼ K(s, Æ) and k (Æ) ¼ k (s, Æ). Then, one can

show that

_QðuÞ ¼ @

@s
K�1
s ðuÞ ¼ �

_K K�1ðuÞ
� �

k K�1ðuÞf g ;

and under appropriate regularity conditions on K, one gets

E _QðUjÞ
� �

¼ �
Z 1

0

_K K�1ðuÞ
� �

k K�1ðuÞf g du ¼ �
Z 1

0

_KðtÞ dt

¼ @

@s

Z 1

0

1� KsðtÞf g dt ¼ @

@s
sþ 1

4

� �
¼ 1

4
:

Next,
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K

n ðtÞ ¼

1

n

Xn
j¼1

1 Uj � Kðsn; tÞ
� �

¼ 1ffiffiffi
n

p b
n  Kðsn; tÞ þ Kðsn; tÞ;

where

b
nðtÞ ¼
1ffiffiffi
n

p
Xn
j¼1

1ðUj � tÞ � t
� �

converges in law to a Brownian bridge b
, independent of Kh. Hence,

ffiffiffi
n

p
K

n ðtÞ � K s
n; t

� �� �
¼ b
n  Kðsn; tÞ þ

ffiffiffi
n

p
Kðsn; tÞ � K s
n; t

� �� �
¼ b
n  Kðsn; tÞ �

ffiffiffi
n

p
s
n � sn
� �

_KðtÞ þ oP ð1Þ:

Moreover, denoting by EU the expectation with respect to Uj, and setting

�sn ¼ �1þ 4

n

Xn
j¼1

K�1ðUjÞ;

one obtains

ffiffiffi
n

p
s
n � sn
� �

¼
ffiffiffi
n

p 4

n

Xn
j¼1

K�1
sn ðUjÞ � 4EU K�1

sn ðUjÞ
n o" #

¼ 4ffiffiffi
n

p
Xn
j¼1

K�1
sn ðUjÞ � K�1ðUjÞ

n o
þ

ffiffiffi
n

p
�sn � sð Þ

� 4
ffiffiffi
n

p
EU K�1

sn ðU1Þ � K�1ðU1Þ
n o

¼ 4
ffiffiffi
n

p
sn � sð Þ 1

n

Xn
j¼1

_QðUjÞ
( )

þ
ffiffiffi
n

p
ð�sn � sÞ

� 4
ffiffiffi
n

p
sn � sð ÞEU _QðU1Þ

� �
þ oP ð1Þ

¼
ffiffiffi
n

p
ð�sn � sÞ þ oP ð1Þ:

It follows that
ffiffiffi
n

p
K

n ðtÞ � K s
n; t

� �� �
converges in distribution to b
  KðtÞ � Z
 _KðtÞ, where

Z
 ¼ �4

Z 1

0

b
  KðtÞdt

is the limit in distribution of
ffiffiffi
n

p
s
n � sn
� �

, since

ffiffiffi
n

p
�sn � sð Þ ¼ �4

Z 1

0

b
n  KðtÞ dt:

Note also that Z


and the limit H of

ffiffiffi
n

p ðsn � sÞ are independent random variables, and that

their distributions are generally different. In fact, H ¼ 2Z � 4X1 � 4X2, where

Z ¼ �4

Z 1

0

b  KðtÞdt

is an independent copy of Z, and
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1ffiffiffi
n

p
Xn
j¼1

FiðXijÞ �
1

2

� 	
[X i; i ¼ 1; 2:

Thus, while the limiting process K
 ¼ b
  K � Z
 _K is independent of the limit

K ¼ Ks �H _K appearing in proposition 1, their distributions are clearly not identical, as

follows from Barbe et al. (1996). Therefore, the procedure cannot be used to estimate any

functional of Kn(Æ) � K(sn, Æ); in particular it cannot be used to estimate the variance of Snn or

any p-value.

Appendix D: Assumptions for the parametric bootstrap based on Chn

Here are the conditions under which Genest & Rémillard (2005) prove that the parametric

bootstrap procedure described in section 4 is valid:

(R1) For any h 2 O, the densities ch of Ch exists, are strictly positive on (0, 1)d, and are twice

differentiable with respect to h. Moreover, for any h0 2 O,

• h 7! _chðuÞ=chðuÞ and h 7!€chðxÞ=chðxÞ are continuous at h0, for almost every u 2 (0, 1)d;

• there is a neighbourhood N ¼ N(h0) of h0 such that for all u 2 (0, 1)d,

sup
h2N

_chðuÞ
chðuÞ

����
���� � h1ðuÞ; sup

h2N

€chðuÞ
chðuÞ

����
���� � h2ðuÞ;

where h21 and h2 are integrable with respect to Ch0.

(R2) For any fixed h0 2 O, h 7! _khðtÞ is continuous at h0, for almost all t 2 (0, 1), and there is a

neighbourhood N of h0 such that suph2N k _khðtÞk � h3ðtÞ, with h3 integrable over (0, 1).

(R3) For any fixed h0 2 O, there exists a square integrable function Jh0, with respect to Ch0,

such that

hn ¼
1

n

Xn
i¼1

Jh0 F1ðX1iÞ; . . . ; FdðXdiÞf g þ oP 1=
ffiffiffi
n

p� �
;

whereZ
ð0;1Þd

ch0ðu1; . . . ; udÞJh0 u1; . . . ; udð Þ du1 � � � dud ¼ h0;

and Z
ð0;1Þd

_ch0ðu1; . . . ; udÞJh0 u1; . . . ; udð Þ du1 � � � dud ¼ I ;

where I is the m � m identity matrix.

For example, if the pseudo-maximum likelihood of Genest et al. (1995) exists, then it

satisfies the regularity assumption R3. If the copula family is indexed by Kendall’s tau, then

assumption R3 is satisfied. In the latter case, classical non-parametric dependence measures

such as Spearman’s rho or van der Waerden’s coefficient also satisfy R3.
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