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Abstract

Many proposals have been made recently for goodness-of-fit testing of copula models. After reviewing them briefly, the authors concentrate
on “blanket tests”, i.e., those whose implementation requires neither an arbitrary categorization of the data nor any strategic choice of smoothing
parameter, weight function, kernel, window, etc. The authors present a critical review of these procedures and suggest new ones. They describe
and interpret the results of a large Monte Carlo experiment designed to assess the effect of the sample size and the strength of dependence on
the level and power of the blanket tests for various combinations of copula models under the null hypothesis and the alternative. To circumvent
problems in the determination of the limiting distribution of the test statistics under composite null hypotheses, they recommend the use of a
double parametric bootstrap procedure, whose implementation is detailed. They conclude with a number of practical recommendations.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a continuous random vector X = (X1, . . . , Xd)

with joint cumulative distribution function H and margins
F1, . . . , Fd . The copula representation of H is given by
H(x1, . . . , xd) = C {F1(x1), . . . , Fd(xd)}, where C is a unique
cumulative distribution function having uniform margins on
(0, 1). A copula model for X arises when C is unknown but
assumed to belong to a class

C0 = {Cθ : θ ∈ O} ,

where O is an open subset of Rp for some integer p ≥ 1.
The books of Joe (1997) and Nelsen (2006) provide handy
compendiums of the most common parametric families of
copulas.

Copula modeling has found many successful applications
of late, notably in actuarial science, survival analysis and
hydrology; see, e.g., Frees and Valdez (1998), Cui and Sun
(2004) and Genest and Favre (2007) and references therein.

∗ Corresponding author.
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However, nowhere has the methodology been adopted and used
with greater intensity than in finance. Ample illustrations are
provided in the books of Cherubini et al. (2004) and McNeil
et al. (2005), notably in the context of asset pricing and credit
risk management.

Given independent copies X1 = (X11, . . . , X1d), . . . ,Xn =

(Xn1, . . . , Xnd) of X, the problem of estimating θ under the
assumption

H0 : C ∈ C0

has already been the object of much work; see, e.g., Genest et al.
(1995), Shih and Louis (1995), Joe (1997, 2005), Tsukahara
(2005) or Chen et al. (2006). However, the complementary issue
of testing H0 is only beginning to draw attention.

The situation is evolving rapidly but at this point in time,
the literature on the subject can be divided broadly into three
groups:

(1) Procedures developed for testing specific dependence
structures such as the Normal copula (Malevergne and
Sornette, 2003) or the equally popular Clayton family,
also referred to as the gamma frailty model in survival
analysis (Shih, 1998; Glidden, 1999; Cui and Sun, 2004).
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(2) Statistics that can be used to test the goodness-of-fit of any
class of copulas but whose implementation involves:
(a) an arbitrary parameter, as in the rank-based statistic due

to Wang and Wells (2000);
(b) kernels, weight functions and associated smoothing

parameters, as in Berg and Bakken (2005), Fermanian
(2005), Panchenko (2005) and Scaillet (2007);

(c) ad hoc categorization of the data into a multiway
contingency table in order to apply an analogue of the
standard chi-squared test, along the lines of Genest and
Rivest (1993), Klugman and Parsa (1999), Andersen
et al. (2005), Dobrić and Schmid (2005) or Junker and
May (2005).

(3) “Blanket tests”, i.e., those applicable to all copula structures
and requiring no strategic choice for their use. Included in
this category are variants of the Wang–Wells approach due
to Genest et al. (2006), but also the procedures investigated
or used by Breymann et al. (2003), Genest and Rémillard
(in press) and Dobrić and Schmid (2007).

And then there are authors who, in applied work, use
standard goodness-of-fit statistics as a tool for choosing
between several copulas, but without attempting to formally
test whether the selected model is appropriate, in the light of
a P-value. See, e.g., the analysis of stock index returns by Ané
and Kharoubi (2003).

The purpose of this paper is to present a critical review of
the blanket goodness-of-fit tests proposed to date, to suggest
variants or improvements, and to compare the relative power
of these procedures through a Monte Carlo study involving a
large number of copula alternatives and dependence conditions.
After some general considerations given in Section 2, existing
tests are described in Section 3 and new statistics are proposed
in Section 4. Listed in Section 5 are the factors considered in
the study designed to assess the level and compare the power
of the selected tests. Results are reported and discussed in
Section 6. Finally, various observations and methodological
recommendations are made in the Conclusion.

2. General considerations

There is a fundamental difference between the problem of
estimating the dependence parameter of a copula model C0 =

{Cθ : θ ∈ O} and the complementary issue of testing the
validity of the null hypothesis H0 : C ∈ C0 for some class
C0 of copulas. The distinction is spelled out below, as it helps to
understand the technical challenges associated with goodness-
of-fit testing in this context.

2.1. Estimation

Two broad approaches to the estimation of the dependence
parameter θ have been developed. They differ mainly through
the user’s willingness to make parametric assumptions or not
about the unknown margins.

Given specific choices of parametric families F j = {Fγ j :

γ j ∈ Γ j } of univariate distributions, estimation can proceed via

the full standard maximum likelihood method under H0 and the
additional assumption that

H ′0 : F1 ∈ F1, . . . , Fd ∈ Fd .

An alternative technique that is computationally more
convenient has been advocated by Joe (1997). His “Inference
Functions for Margins” or IFM approach proceeds in two
steps: parametric estimates Fγ̂1 , . . . , Fγ̂d of the margins are
first obtained under H ′0; they are then plugged into the log-
likelihood, viz.

L(θ) =
n∑

i=1

log[cθ {Fγ̂1(X i1), . . . , Fγ̂d (X id)}],

in which cθ denotes the density of the copula Cθ (assuming that
it exists). The function L(θ) is then maximized. As illustrated
by Joe (2005), however, the gain in computational convenience
often comes at the expense of efficiency. Kim et al. (2007)
further show that an inappropriate choice of models for the
margins may have detrimental effects on the estimation of the
dependence parameter per se.

If one is unwilling to assume H ′0, nonparametric estimation
of the margins must be used. The most natural choice consists
in replacing F j by its empirical counterpart

F̂ j (t) =
1
n

n∑
i=1

1(X i j ≤ t),

and then estimating θ by the value θ̂ that maximizes the log
pseudo-likelihood

`(θ) =

n∑
i=1

log[cθ {F̂1(X i1), . . . , F̂d(X id)}].

This amounts to working with the ranks of the observations,
because for all i ∈ {1, . . . , n} and j ∈ {1, . . . , d}, Ri j =

nF̂ j (X i j ) is the rank of X i j among X1 j , . . . , Xnj .
The asymptotic normality of θ̂ was established by Genest

et al. (1995), and by Shih and Louis (1995) in the presence of
censorship. As shown by Genest and Werker (2002), however,
this method is not asymptotically semi-parametrically efficient
in general. See Klaassen and Wellner (1997) for a notable
exception and Tsukahara (2005) or Chen et al. (2006) for other
rank-based estimators.

2.2. Goodness-of-fit testing

When testing the hypothesis H0 : C ∈ C0 that the
dependence structure of a multivariate distribution is well-
represented by a specific parametric family C0 of copulas, the
option of modeling the margins by parametric families is no
longer viable. For, it would be tantamount to testing the much
narrower null hypothesis H0 ∩ H ′0 corresponding to a full
parametric model. In this context, the marginal distributions
F1, . . . , Fd are (infinite-dimensional) nuisance parameters.

Given that the underlying copula C of a random vector
is invariant by continuous, strictly increasing transformations
of its components, it appears that the only reasonable option
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for testing H0 consists of basing the inference on the
maximally invariant statistics with respect to this set of
transformations, i.e., the ranks. Indeed, all formal goodness-
of-fit tests mentioned in the introduction are rank-based.
Alternatively, they can be viewed as functions of the collection
U1 = (U11, . . . ,U1d), . . ., Un = (Un1, . . . ,Und) of pseudo-
observations deduced from the ranks, viz. Ui j = Ri j/(n+1) =
nF̂ j (X i j )/(n + 1), where the scaling factor n/(n + 1) is only
introduced to avoid potential problems with cθ blowing up at
the boundary of [0, 1]d .

The pseudo-observations U1, . . . ,Un can be interpreted as a
sample from the underlying copula C . It is plain, however, that
they are not mutually independent and that their components
are only approximately uniform on (0, 1). Accordingly, any
inference procedure based on these constructs should take these
features into account. As will be seen, testing procedures that
mistakenly ignore these considerations not only lack power but
fail to hold their nominal level.

3. “Blanket tests” currently available

This section describes five rank-based procedures that have
been recently proposed for testing the goodness-of-fit of any
class of d-variate copulas. Of all the tests listed in Section 1,
these are the only ones that qualify as “blanket”, in the sense
that they involve no parameter tuning or other strategic choices.

3.1. Two tests based on the empirical copula

As mentioned in Section 2, the pseudo-observations
U1, . . . ,Un constitute the maximally invariant statistics on
which to test H0 : C ∈ C0. The information they
contain is conveniently summarized by the associated empirical
distribution, viz.

Cn(u) =
1
n

n∑
i=1

1(Ui1 ≤ u1, . . . ,Uid ≤ ud),

u = (u1, . . . , ud) ∈ [0, 1]d . (1)

It is usually called the “empirical copula”, though it is neither
a copula nor exactly the same (except asymptotically) as
originally defined by Deheuvels (1979).

Gänßler and Stute (1987), Fermanian et al. (2004)
and Tsukahara (2005) give various conditions under which Cn
(or slight variants thereof) is a consistent estimator of the true
underlying copula C , i.e., whether H0 is true or not. Given that
it is entirely nonparametric, Cn is arguably the most objective
benchmark for testing H0 : C ∈ C0. Therefore, natural
goodness-of-fit tests consist in comparing a “distance” between
Cn and an estimation Cθn of C obtained under H0. Here and in
the sequel, θn = Tn (U1, . . . ,Un) stands for an estimate of θ
derived from the pseudo-observations.

Goodness-of-fit tests based on the empirical process

Cn =
√

n(Cn − Cθn )

are briefly considered by Fermanian (2005), who comments
that they “seem to be unpractical, except by bootstrapping”.

Genest and Rémillard (in press) examine the implementation
issues in detail. In particular, they consider rank-based versions
of the familiar Cramér–von Mises and Kolmogorov–Smirnov
statistics, viz.

Sn =

∫
[0,1]d

Cn(u)2dCn(u) and Tn = sup
u∈[0,1]d

|Cn(u)| . (2)

Large values of these statistics lead to the rejection of H0.
Approximate P-values can be deduced from their limiting
distributions, which depend on the asymptotic behavior of
the process Cn . Genest and Rémillard (in press) establish
the convergence of the latter under appropriate regularity
conditions on the parametric family C0 and the sequence (θn) of
estimators. They also show that the tests based on Sn and Tn are
consistent; i.e., if C 6∈ C0, then H0 is rejected with probability
1 as n→∞.

In practice, the limiting distributions of Sn and Tn depend on
the family of copulas under the composite null hypothesis, and
on the unknown parameter value θ in particular. As a result, the
asymptotic distribution of the test statistics cannot be tabulated
and approximate P-values can only be obtained via specially
adapted Monte Carlo methods. A specific parametric bootstrap
procedure is described in Appendix A. Its validity is established
by Genest and Rémillard (in press).

3.2. Two tests based on Kendall’s transform

Another avenue successively explored by Genest and Rivest
(1993), Wang and Wells (2000) and Genest et al. (2006) con-
sists in basing a test of H0 on a probability integral transforma-
tion of the data. The specific mapping they consider is

X 7→ V = H(X) = C(U1, . . . ,Ud),

where Ui = Fi (X i ) for i ∈ {1, . . . , d} and the joint distribution
of U = (U1, . . . ,Ud) is C . This has come to be called Kendall’s
transform, because the expectation of V is an affine transforma-
tion of the multivariate version of Kendall’s coefficient of con-
cordance; see Barbe et al. (1996) or Jouini and Clemen (1996).

Let K denote the (univariate) distribution function of V .
Genest and Rivest (1993) show that K can be estimated
nonparametrically by the empirical distribution function
of a rescaled version of the pseudo-observations V1 =

Cn(U1), . . . , Vn = Cn(Un). Barbe et al. (1996) give weak
regularity conditions under which a central limit theorem can
be proved for the slight variant

Kn(v) =
1
n

n∑
i=1

1 (Vi ≤ v) , v ∈ [0, 1]. (3)

In particular, the latter is a consistent estimator of the
underlying distribution K .

Now under H0, the vector U = (U1, . . . ,Ud) is distributed
as Cθ for some θ ∈ O, and hence the Kendall transform Cθ (U)
has distribution Kθ . Through a measure of distance between Kn
and a parametric estimation Kθn of K , one can test

H ′′0 : K ∈ K0 = {Kθ : θ ∈ O}.
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Because H0 ⊂ H ′′0 , of course, the nonrejection of H ′′0 does not
entail the acceptance of H0. Consequently, tests based on the
empirical process

Kn =
√

n(Kn − Kθn )

are not generally consistent. Although they point out this
limitation, Genest et al. (2006) investigate tests of H0 based
on this process. The idea had been put forward earlier (but
not carried through) by Wang and Wells (2000) in the case
of bivariate Archimedean copulas, for which H ′′0 and H0 are
equivalent.

The specific statistics considered by Genest et al. (2006)
are rank-based analogues of the Cramér–von Mises and
Kolmogorov–Smirnov statistics, viz.

S(K )n =

∫ 1

0
Kn(v)

2dKθn (v) and T (K )n = sup
v∈[0,1]

|Kn(v)|. (4)

Large values of either one of these statistics lead to the
rejection of H ′′0 . Approximate P-values can be deduced from
their limiting distributions, which depend on the asymptotic
behavior of Kn . The convergence of the latter is established
by Genest et al. (2006) under appropriate regularity conditions
on the parametric families C0, K0, and the sequence (θn) of
estimators.

As the asymptotic distributions of S(K )n and T (K )n depend
both on the unknown copula Cθ and on θ , approximate P-
values for these statistics must again be found via simulation.
See Appendix B for a parametric bootstrap procedure.

3.3. A test based on Rosenblatt’s transform

Another well-known probability integral transformation on
which goodness-of-fit tests could be based is due to Rosenblatt
(1952). This mapping, which is commonly used for simulation,
provides a simple way of decomposing a random vector with
a given distribution into mutually independent components
that are uniformly distributed on the unit interval. Its standard
definition is recalled below for convenience.

Definition. Rosenblatt’s probability integral transform of a
copula C is the mapping R : (0, 1)d → (0, 1)d which to
every u = (u1, . . . , ud) ∈ (0, 1)d assigns another vector
R(u) = (e1, . . . , ed) with e1 = u1 and for each i ∈ {2, . . . , d},

ei =
∂ i−1C(u1, . . . , ui , 1, . . . , 1)

∂u1 · · · ∂ui−1

/
∂ i−1C(u1, . . . , ui−1, 1, . . . , 1)

∂u1 · · · ∂ui−1
. (5)

A critical property of Rosenblatt’s transform is that U is
distributed as C , denoted U ∼ C , if and only if the distribution
of R(U) is the d-variate independence copula

C⊥(e1, . . . , ed) = e1 × · · · × ed , e1, . . . , ed ∈ [0, 1].

Thus H0 : U ∼ C ∈ C0 is equivalent to H∗0 : Rθ (U) ∼ C⊥ for
some θ ∈ O.

To test this hypothesis, therefore, one can use the fact that
under H0, the pseudo-observations E1 = Rθn (U1) , . . . ,En =

Rθn (Un) can be interpreted as a sample from the independence

copula C⊥. Of course, these pseudos are not mutually
independent and only approximately uniform on (0, 1)d . Any
inference procedure involving these constructs should thus
take these features into account. This point is raised though
eventually ignored by Breymann et al. (2003).

To describe the procedure of Breymann et al. (2003), let
Φ denote the cumulative distribution function of a standard
N (0, 1) random variable and define

χi =

d∑
j=1

{Φ−1(Ei j )}
2, i ∈ {1, . . . , n}.

Exploiting the fact that E1, . . . ,En are “approximately”
uniformly distributed over (0, 1)d , these authors argue that
χ1, . . . , χn can be interpreted as a sample from G, the
distribution function of a chi-square random variable with
d degrees of freedom. Now a natural estimate of G is the
empirical distribution of the set χ1, . . . , χn , viz.

Gn(t) =
1
n

n∑
i=1

1 (χi ≤ t) , t ≥ 0. (6)

For convenience, Breymann et al. (2003) assume that the
empirical process Gn =

√
n(Gn − G) behaves asymptotically

as if E1, . . . ,En were exactly uniform. They further suppose
that the asymptotic distribution is independent of θ , and hence
that it can be represented as β ◦ G, where β is the standard
Brownian bridge.

Should these assumptions hold true, Breymann et al. (2003)
argue that it would then be possible to test H0 with the
Anderson–Darling statistic

An = −n −
1
n

n∑
i=1

(2i− 1)[log{G(χ(i))}

+ log{1− G(χ(n+1−i))}], (7)

where χ(1) ≤ · · · ≤ χ(n) are the order statistics corresponding
to χ1, . . . , χn . The P-value would be simply given by reference
to the limiting distribution of the original Anderson–Darling
statistic; see e.g., Shorack and Wellner (1986).

As mentioned by Dobrić and Schmid (2007), however, the
conclusions of Breymann et al. (2003) are too optimistic.
Simulations show clearly that if the tabulated values of the
Anderson–Darling statistic are used to perform their test, the
resulting procedure has essentially no power and does not even
maintain its nominal level.

To fix this problem, Dobrić and Schmid (2007) explain how
the results of Genest and Rémillard (in press) could be exploited
to compute reliable P-values for test statistics based on Gn .
In their paper, the Anderson–Darling test statistic An is used,
together with the parametric bootstrap procedure described in
Appendix C. Note, however, that the validity of the parametric
bootstrap depends critically on the existence of a limiting
distribution for An . The conditions (if any) under which this
happens remain to be determined. Nevertheless, this test was
included in the simulation study.
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4. New procedures based on Rosenblatt’s transform

One avenue not covered by Breymann et al. (2003) or
Dobrić and Schmid (2007) consists in working directly with
the process, using the full power of Rosenblatt’s transform. The
idea is not new, as it appeared in Klugman and Parsa (1999)
for bivariate censored data. These authors propose a Pearson
chi-square statistic computed from E1, . . . ,En . However, their
P-value calculation is incorrect, because it assumes wrongly
that the limiting distribution is chi-square. The fact that the
margins were estimated using parametric families is not taken
into account in their work.

Under the null hypothesis H0, the empirical distribution
function

Dn(u) =
1
n

n∑
i=1

1 (Ei ≤ u) , u ∈ [0, 1]d (8)

associated with the pseudo-observations E1, . . . ,En should be
“close” to C⊥. Thus, any reasonable notion of distance between
Dn and C⊥ is a good candidate for testing goodness-of-fit.
Here, two Cramér–von Mises statistics are considered, namely

S(C)n = n
∫
[0,1]d
{Dn(u)− C⊥(u)}2 dDn(u)

=

n∑
i=1

{Dn(Ei )− C⊥(Ei )}
2 (9)

and

S(B)n = n
∫
[0,1]d
{Dn(u)− C⊥(u)}2 du

=
n

3d −
1

2d−1

n∑
i=1

d∏
k=1

(
1− E2

ik

)
+

1
n

n∑
i=1

n∑
j=1

d∏
k=1

(
1− Eik ∨ E jk

)
,

where a ∨ b = max(a, b). These statistics only differ in their
integration measure.

Using the tools described in the paper of Ghoudi and
Rémillard (2004), one can easily determine the asymptotic null
behavior of

√
n (Dn−C⊥) and, in turn, the convergence of S(B)n

and S(C)n . The limiting null distributions of these statistics are
both unwieldy and, as in previous cases, they are functions both
of the underlying copula and of its unknown parameter value
θ . Nevertheless, goodness-of-fit testing is possible through the
parametric bootstrap procedure described in Appendix D.

5. Experimental design

A large-scale Monte Carlo experiment was conducted to
assess the finite-sample properties of the proposed goodness-
of-fit tests for various choices of dependence structures and
degrees of association. Two characteristics of the tests were of
interest: their ability to maintain their nominal level, arbitrarily
fixed at 5% throughout the study, and their power under a
variety of alternatives.

To curtail the computational effort, comparisons were
limited to the bivariate case and to three degrees of dependence,
viz. τ = 0.25, 0.50, 0.75. Seven one-parameter families of
copulas were also considered, both under the null hypothesis
and under the alternative. They fall into three categories:

(1) Three meta-elliptical copula families uniquely determined
from the following classical bivariate distributions with
correlation coefficient ρ = sin(πτ/2):
(a) the Gaussian distribution;
(b) the Student distribution with ν = 4 degrees of freedom;
(c) the Pearson type II distribution with ν = 4 degrees of

freedom.
(2) Three of the most common Archimedean copula models,

namely
(a) the Clayton family, also known in the survival analysis

literature as the gamma frailty model (Clayton, 1978;
Cook and Johnson, 1981);

(b) the Frank family (Nelsen, 1986; Genest, 1987);
(c) the Gumbel–Hougaard family originally considered by

Gumbel (1960) in the context of extreme-value theory.
(3) The Plackett family of copulas (Plackett, 1965).

The class of meta-elliptical copulas was introduced by Fang
et al. (2002, 2005); its properties were examined by Frahm et al.
(2003) and Abdous et al. (2005). These dependence structures
are popular in actuarial science and in finance, where data often
(but not always) exhibit heavy-tail dependence; see Malevergne
and Sornette (2003), Cherubini et al. (2004) and McNeil et al.
(2005) and references therein.

The Archimedean models are also commonly used in
practice, particularly in survival analysis, because of their
interpretation as mixture models and the natural extension they
provide for Cox’s proportional hazards model; see, e.g., Oakes
(1989), Faraggi and Korn (1996) or Wang and Wells (2000).
Refer also to Frees and Valdez (1998) and Klugman and Parsa
(1999) for actuarial applications.

Finally, the Plackett system of distributions, which is neither
Archimedean nor meta-elliptical, has found applications in
biostatistics because of its constant cross-ratio property; see,
e.g., Burzykowski et al. (2004). Dobrić and Schmid (2005),
among others, investigated the relevance of this specific copula
model in a financial context.

For every possible choice of copula and fixed value of τ ,
10,000 random samples of size n = 50 were generated. An
equal number of samples of size n = 150 was also obtained.
Each of these samples was then used to test the goodness-of-
fit of the seven families of distributions. Each of the following
eight tests was applied in turn:

(1) The two tests derived by Genest and Rémillard (in press)
from the empirical copula process, i.e., those based on the
statistics Sn and Tn .

(2) The two tests developed by Genest et al. (2006) using
Kendall’s transform, i.e., those involving statistics S(K )n and
T (K )n .

(3) The test of Breymann et al. (2003) based on the statistic An
and its corrected version developed by Dobrić and Schmid
(2007), which both rely on Rosenblatt’s transform.
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(4) The two new procedures suggested in Section 4, i.e., those
based on the statistics S(B)n and S(C)n .

In all cases, the number of (primary-level) bootstrap samples
was fixed at N = 1000. Whenever necessary, m = 2500
samples were drawn for the second-level bootstrap. This
occurred when a closed-form expression was unavailable for
the copula Cθ or the associated Kendall distribution Kθ . Two of
the meta-elliptical copula models fall into this category on both
accounts; for the Normal and the Plackett distributions, only Kθ
needed to be estimated via a two-level parametric bootstrap.

Finally, whenever the parameter of a copula model had to be
estimated, this was done by inversion of Kendall’s tau. Given
the sample version τn of τ , this involved solving for θ in the
equation

4
∫
[0,1]2

Cθ (u1, u2)dCθ (u1, u2)− 1 = τn .

In all families considered, the solution is unique. See Nelsen
(2006) for appropriate formulas and Genest and Rémillard
(in press) for arguments showing that this method meets all the
conditions required for the validity of the parametric bootstrap.

To sum up, the simulations were run according to a balanced
experimental design involving the following factors:

C0: hypothesized copula model under H0 (7 choices);
C: copula model from which the data were generated (7

choices);
τ : level of dependence in C, as measured by Kendall’s tau (3

choices);
n: size of each sample drawn from C (2 choices).

In each of these 7× 7× 3× 2 = 294 cases, 10,000 repetitions
were performed in order to estimate the level or power of each
of the eight tests under consideration.

This is by far the largest Monte Carlo experiment carried out
to date in this area. The results presented below required the
nearly exclusive use of 140 CPUs over a one-month period. By
comparison, for example, the simulation study of Fermanian
(2005) is limited to testing the goodness-of-fit of Frank’s
family; his alternative hypotheses are mixtures of the Frank
and independence copula. The level and power of his tests are
assessed from samples of size n = 200 for 30 combinations
of the dependence and mixture parameters. With his choice of
kernel and window, the tests turn out to be conservative.

In another study, Dobrić and Schmid (2007) look at the
level and power of the statistic An using samples of size n =
2500 when the null hypothesis is either Normal, or Student
with 3 degrees of freedom. The alternatives are either Clayton,
Normal or Student, and three scenarios are considered for
parameter estimation: (i) margins and dependence parameter
ρ known; (ii) margins unknown but ρ known; (iii) margins
and ρ both unknown. The study shows the effectiveness of the
bootstrap algorithm, but no comparisons with alternative tests
are included.

Recently, Scaillet (2007) also studied the performance of
Fermanian’s tests when the smoothing parameters are held
fixed. His Monte Carlo simulations reveal that a bootstrap-
based version of the tests performs well in samples of size

Fig. 1. Level of seven goodness-of-fit tests, as observed across 21 = 7 × 3
choices of C0 and τ . Top panel: n = 50; bottom panel: n = 150.

n = 50 and 200. Mixtures of Frank, Normal and Student
copulas were used. Comparisons with the tests based on S(K )n

and T (K )n are also included but deemed inconclusive, as per the
author’s self-admission.

6. Results

Tables 1–3 report the level and power of the blanket tests
from Sections 3 and 4. Each table corresponds to a specific
combination of τ ∈ {0.25, 0.50, 0.75} and n = 150. Each line
of a table shows the percentage of rejection of H0 : C ∈ C0
associated with the different tests, given a choice of C0 and a
true underlying copula family C.

As an example, Table 1 shows that when testing for the Frank
copula from a random sample of size n = 150, there are approx-
imately 33.4% of chances that the test based on the Cramér–von
Mises statistic Sn will reject the null hypothesis when the data
are from the Gumbel–Hougaard copula with τ = 0.25.

Due to space limitations, the corresponding tables for sample
size n = 50 are not presented; they can be found in the doctoral
dissertation of Beaudoin (2007). Note that the results for the
test of Breymann et al. (2003) are omitted from all tables,
given that the percentage of rejection of H0 observed in the
simulations was never higher than 1.5%. This portrays vividly
the difficulties associated with an improper identification of the
limiting distribution of a test statistic, as independently reported
by Dobrić and Schmid (2007).

Because of the sheer amount of information in Tables 1–3,
it is difficult to get a quick grasp of the relative performance
of the tests in terms of level and power. To assist with the
interpretation of the results, various aspects of the question
are examined and illustrated with the help of box plots in the
following subsections.

6.1. Level of the tests

Given that their finite-sample distribution is approximated
by a parametric bootstrap procedure, the tests based on statistics

1 : Sn, 3 : S(K )n , 5 : S(B)n 7 : An

2 : Tn, 4 : T (K )n , 6 : S(C)n

are expected to hold their nominal level. A cursory look at the
figures highlighted in Tables 1–3 confirms that this happens in
the vast majority of cases.

The same message is conveyed graphically by Fig. 1, where
box plots show the dispersion in the levels observed across
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Table 1
Percentage of rejection of H0 by various tests for data sets of size n = 150 arising from different copula models with τ = 0.25

Copula under H0 True copula Test based on

Sn Tn S(K )n T (K )n S(B)n S(C)n An

Clayton Clayton 4.6 4.8 4.1 4.5 4.7 4.8 4.9
Gumbel–Hougaard 86.1 62.4 57.9 42.7 80.9 76.7 22.4
Frank 56.3 32.7 37.4 26.4 42.8 36.2 6.2
Plackett 56.0 31.2 33.7 23.4 43.9 39.0 8.1
Normal 50.2 27.5 24.5 16.8 41.8 34.6 6.4
Student 4 dl 56.5 32.3 23.2 15.5 51.0 52.7 32.9
Pearson 4 dl 49.9 28.7 26.1 17.3 43.3 32.9 6.4

Gumbel–Hougaard Clayton 72.1 62.6 92.3 82.1 65.1 60.5 8.3
Gumbel–Hougaard 5.0 5.0 4.7 5.1 5.1 5.0 5.0
Frank 15.4 15.4 19.9 15.1 12.9 10.0 5.9
Plackett 14.3 14.7 18.9 14.7 12.5 10.6 4.9
Normal 10.1 11.7 24.4 18.9 10.2 7.5 5.9
Student 4 dl 14.1 12.9 29.8 26.2 14.3 18.2 17.4
Pearson 4 dl 10.2 12.6 23.6 18.5 12.8 7.8 11.3

Frank Clayton 40.0 36.8 77.3 70.6 36.2 36.1 9.6
Gumbel–Hougaard 33.4 18.5 9.1 6.1 27.8 29.5 12.4
Frank 5.3 5.1 5.1 5.0 4.9 4.9 5.1
Plackett 5.7 5.2 5.4 5.1 5.2 6.1 6.6
Normal 7.8 7.3 10.5 9.9 6.2 6.3 5.3
Student 4 dl 18.5 11.4 22.0 19.7 14.6 23.0 40.7
Pearson 4 dl 6.5 7.3 7.7 7.6 6.5 5.2 7.0

Plackett Clayton 37.6 34.2 69.8 60.5 33.3 31.9 6.2
Gumbel–Hougaard 30.4 16.6 7.2 5.4 24.6 24.8 6.8
Frank 5.0 5.2 4.8 5.1 5.0 4.2 6.5
Plackett 5.2 5.0 4.8 4.8 4.5 4.7 5.0
Normal 6.8 6.8 8.2 7.6 6.1 5.4 5.7
Student 4 dl 14.1 9.8 15.6 14.4 10.1 15.6 26.2
Pearson 4 dl 6.2 7.3 6.6 6.4 7.5 5.4 12.0

Normal Clayton 31.6 26.6 56.9 45.8 33.3 33.0 7.2
Gumbel–Hougaard 23.8 11.9 7.1 5.5 24.7 27.0 8.9
Frank 7.9 7.2 5.6 5.3 7.2 7.0 5.5
Plackett 7.9 6.8 4.4 4.4 8.2 9.4 6.0
Normal 5.1 5.0 4.7 5.2 4.7 5.0 4.8
Student 4 dl 10.5 6.8 7.4 7.4 16.6 27.8 29.9
Pearson 4 dl 4.8 5.3 4.9 4.7 4.7 3.4 8.2

Student 4 dl Clayton 27.7 26.2 52.1 39.0 25.1 17.4 11.2
Gumbel–Hougaard 19.1 11.4 7.4 6.0 17.3 11.5 9.5
Frank 9.1 8.2 9.5 7.6 8.9 4.5 23.3
Plackett 7.7 7.7 7.3 6.2 6.6 3.6 13.9
Normal 4.9 5.9 5.4 5.0 7.9 3.1 23.0
Student 4 dl 4.8 5.3 4.6 4.7 4.5 4.8 5.4
Pearson 4 dl 6.2 7.1 6.5 5.9 15.7 5.9 42.9

Pearson 4 dl Clayton 35.7 29.3 60.0 50.9 40.5 44.8 16.9
Gumbel–Hougaard 28.2 13.7 7.8 5.7 32.1 40.1 21.2
Frank 9.0 7.0 4.9 4.7 10.4 12.4 7.6
Plackett 9.2 7.2 4.2 4.1 13.2 17.8 12.4
Normal 6.2 5.2 5.5 5.5 6.5 9.0 8.1
Student 4 dl 16.4 8.6 10.2 9.3 28.0 47.3 52.6
Pearson 4 dl 5.2 5.1 5.0 4.8 4.9 4.7 5.3

the seven tests and the 21 = 7 × 3 combinations of null
hypothesis C0 and level of dependence τ . The data for n = 50
(from Beaudoin (2007)) and n = 150 (from Tables 1–3) are in
the top and bottom panel, respectively.

In Fig. 1, the dimensions of each box are defined by the
three quartiles of the empirical distribution of levels; outliers
are indicated by open dots. The graphs show that overall,
the parametric bootstrap algorithm does a very good job of

approximating the null distribution of the various statistics.
Except in a few cases, the performance is quite acceptable when
n = 50. It is almost irreproachable when n = 150.

6.2. Effect of sample size

It is a classical fact of statistics that the power of a test
increases with sample size. As Fig. 2 clearly shows, the present
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Table 2
Percentage of rejection of H0 by various tests for data sets of size n = 150 arising from different copula models with τ = 0.50

Copula under H0 True copula Test based on

Sn Tn S(K )n T (K )n S(B)n S(C)n An

Clayton Clayton 5.3 5.0 4.5 4.5 5.1 5.0 5.0
Gumbel–Hougaard 99.9 98.3 98.5 91.4 99.7 99.5 78.3
Frank 95.7 81.2 89.5 74.9 94.4 90.3 37.2
Plackett 95.8 77.7 83.5 63.5 92.9 90.4 62.0
Normal 93.7 74.1 75.1 53.7 89.0 85.5 35.2
Student 4 dl 94.8 78.0 75.0 54.4 87.9 87.6 50.4
Pearson 4 dl 94.0 74.3 75.8 55.0 91.9 88.0 31.9

Gumbel–Hougaard Clayton 99.6 98.4 99.9 99.0 99.7 99.5 33.4
Gumbel–Hougaard 4.6 5.0 4.6 4.9 4.5 4.9 5.0
Frank 39.8 37.5 42.4 28.4 52.1 37.0 9.3
Plackett 29.8 27.2 32.0 23.1 43.2 37.0 21.6
Normal 18.3 21.1 37.7 27.4 33.7 25.2 4.9
Student 4 dl 21.8 21.1 40.6 31.7 29.7 31.9 10.0
Pearson 4 dl 18.1 21.7 36.6 26.2 41.2 28.9 4.0

Frank Clayton 89.1 84.9 98.6 96.3 86.9 90.4 13.3
Gumbel–Hougaard 63.0 39.6 28.3 15.8 44.1 57.6 9.2
Frank 4.8 5.1 4.8 5.2 4.8 4.8 5.1
Plackett 8.4 6.3 7.5 6.8 10.5 19.9 12.5
Normal 19.9 15.0 22.6 17.3 8.9 14.4 4.8
Student 4 dl 35.1 19.6 37.2 27.2 22.9 44.3 19.1
Pearson 4 dl 15.0 13.0 17.3 13.1 7.1 8.9 5.8

Plackett Clayton 83.9 78.4 95.5 86.4 79.6 78.0 12.5
Gumbel–Hougaard 48.8 28.1 16.4 10.1 29.1 30.4 8.1
Frank 6.8 7.8 8.2 8.0 10.2 3.9 10.5
Plackett 5.0 5.3 5.0 5.1 4.9 5.2 4.7
Normal 9.8 11.2 9.4 7.9 6.9 5.1 12.3
Student 4 dl 15.1 11.4 15.1 10.6 7.4 11.7 7.4
Pearson 4 dl 8.2 11.0 7.7 6.5 9.4 5.5 21.3

Normal Clayton 80.0 68.8 90.3 75.2 90.8 88.2 7.8
Gumbel–Hougaard 38.3 17.8 16.1 10.8 42.0 44.4 5.7
Frank 20.2 14.3 17.4 14.1 13.4 8.5 8.7
Plackett 13.2 9.7 6.8 6.6 18.0 22.7 18.1
Normal 4.9 5.0 4.9 5.2 5.0 5.3 4.8
Student 4 dl 8.2 5.3 5.9 5.2 20.4 32.1 8.8
Pearson 4 dl 4.6 4.9 5.0 5.0 4.8 3.0 5.5

Student 4 dl Clayton 77.3 70.5 90.6 73.2 84.9 74.9 6.0
Gumbel–Hougaard 33.9 18.2 17.3 11.8 30.3 20.9 4.9
Frank 26.9 18.9 29.3 20.7 24.2 8.1 6.0
Plackett 13.8 11.0 11.6 9.5 10.2 6.9 10.4
Normal 5.2 6.4 5.9 6.1 9.9 2.9 6.7
Student 4 dl 5.0 4.9 4.9 5.0 5.1 5.2 4.9
Pearson 4 dl 5.6 6.8 6.8 6.7 18.3 5.2 9.4

Pearson 4 dl Clayton 81.8 69.6 91.2 76.3 92.9 92.8 11.2
Gumbel–Hougaard 41.9 19.3 16.2 10.7 51.7 59.8 8.2
Frank 18.9 13.5 13.9 11.7 14.5 12.8 11.4
Plackett 13.9 9.7 5.6 5.7 28.8 37.5 23.7
Normal 5.5 5.0 5.0 4.8 7.4 11.0 5.0
Student 4 dl 10.9 6.2 6.7 5.7 34.3 52.4 14.1
Pearson 4 dl 4.7 4.7 4.7 4.8 4.7 4.9 4.8

case is no exception. The box plots displayed there portray the
variation in the ratio power (n = 150)/power (n = 50) for
each of the seven tests, as observed across 126 = 7 × 6 × 3
combinations of factors C0, C and τ , when the first two factors
are different.

One can readily see from Fig. 2 that on average, the tests
double their power as sample size goes from n = 50 to 150.
In many instances, the improvement is more than four-fold but
needless to say, it would quickly level off (to 1) as n keeps

growing. However, there are also a few cases where no gain in
power occurs. It is instructive to examine more carefully what
happens in those extreme cases.

(1) What are the outliers identified in Fig. 2 and why is the
increase in power so large in those cases?
(a) Most outliers occur either at τ = 0.25 or 0.75.
(b) The statistics Sn , Tn and S(B)n have very few outliers, if

any.
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Table 3
Percentage of rejection of H0 by various tests for data sets of size n = 150 arising from different copula models with τ = 0.75

Copula under H0 True copula Test based on

Sn Tn S(K )n T (K )n S(B)n S(C)n An

Clayton Clayton 5.4 5.0 4.9 5.1 5.1 5.2 5.0
Gumbel–Hougaard 99.9 99.9 99.9 98.7 99.9 99.9 49.1
Frank 99.1 86.2 97.0 81.2 99.9 99.7 76.7
Plackett 99.5 89.1 93.6 73.6 99.6 99.5 64.1
Normal 99.8 91.7 94.9 77.7 99.5 99.6 23.8
Student 4 dl 99.8 95.1 94.3 79.4 99.0 99.1 18.2
Pearson 4 dl 99.7 90.7 95.1 77.1 99.7 99.7 29.8

Gumbel–Hougaard Clayton 99.9 99.5 99.9 99.2 99.9 99.9 29.0
Gumbel–Hougaard 4.5 4.7 4.4 4.6 5.2 4.8 4.9
Frank 51.7 45.4 61.6 38.0 83.8 72.4 75.0
Plackett 25.8 20.3 29.8 17.9 67.8 62.8 39.6
Normal 12.3 17.0 29.4 18.6 60.7 53.6 5.9
Student 4 dl 16.1 17.4 32.9 19.8 54.8 52.0 3.9
Pearson 4 dl 11.8 18.6 30.1 19.6 66.9 58.7 6.5

Frank Clayton 96.6 91.7 99.6 95.5 99.7 99.7 26.8
Gumbel–Hougaard 81.9 43.6 53.2 27.1 59.9 74.2 40.0
Frank 4.7 4.7 4.5 4.7 5.0 5.1 5.2
Plackett 20.6 8.0 15.4 8.8 18.6 36.0 7.9
Normal 40.9 21.2 40.2 20.5 18.4 30.1 49.8
Student 4 dl 59.4 26.0 56.0 27.9 34.4 58.2 42.3
Pearson 4 dl 34.2 21.0 34.5 18.0 15.0 22.3 54.1

Plackett Clayton 89.8 86.8 97.7 78.6 99.5 99.1 18.8
Gumbel–Hougaard 45.8 23.4 19.1 11.4 35.5 29.4 37.4
Frank 14.9 15.4 18.5 15.3 9.7 3.6 10.9
Plackett 4.7 5.0 4.9 5.1 4.9 5.2 5.2
Normal 7.7 12.9 7.7 6.0 2.5 1.2 44.3
Student 4 dl 11.0 12.3 11.4 6.7 4.3 3.6 45.2
Pearson 4 dl 7.4 13.8 6.6 5.5 2.9 1.5 44.2

Normal Clayton 91.8 82.4 97.3 75.4 99.9 99.9 8.2
Gumbel–Hougaard 38.5 13.2 17.9 10.6 55.5 54.0 4.7
Frank 42.2 22.9 41.4 24.6 32.8 20.1 70.2
Plackett 16.5 7.6 7.0 7.0 23.0 30.6 30.0
Normal 4.9 4.4 4.4 4.8 4.9 4.6 5.1
Student 4 dl 6.6 4.3 4.9 4.5 12.3 18.3 4.9
Pearson 4 dl 4.4 5.3 4.6 4.8 4.8 3.7 5.1

Student 4 dl Clayton 90.6 86.6 97.7 78.6 99.9 99.7 10.9
Gumbel–Hougaard 33.9 15.1 19.2 11.5 48.4 39.3 4.6
Frank 48.2 30.5 53.9 32.4 39.3 20.3 81.8
Plackett 15.7 8.9 11.0 9.7 16.4 17.2 43.5
Normal 4.1 5.7 5.1 6.0 5.0 2.1 5.9
Student 4 dl 4.9 4.7 4.8 4.9 5.6 5.3 4.5
Pearson 4 dl 4.3 6.4 5.4 6.0 6.2 2.7 7.1

Pearson 4 dl Clayton 93.0 81.4 97.4 75.1 99.9 99.9 7.3
Gumbel–Hougaard 42.0 13.3 18.4 10.5 58.3 60.3 4.5
Frank 41.2 21.0 37.4 22.8 28.4 20.2 63.4
Plackett 17.5 7.3 6.5 6.2 26.7 37.3 25.8
Normal 5.3 4.3 5.0 4.8 5.6 7.3 5.1
Student 4 dl 8.3 4.3 5.4 4.3 18.3 28.9 5.2
Pearson 4 dl 4.5 4.8 4.6 4.7 4.8 5.0 4.7

(c) The outliers at τ = 0.25 are for S(K )n and T (K )n , which
prove particularly apt at detecting that data are not of
the Clayton type as n increases.

(d) Most of the outliers at τ = 0.75 are for T (K )n and
An ; when n = 150, the first is much better as a
goodness-of-fit test for the Frank copula, while the
second can discriminate a Clayton dependence structure
more easily.

(2) In what cases does one observe an increase in power of 10%
or less (as identified by the vertical line crossing the box
plots), and why?

(a) This phenomenon occurs mostly when τ = 0.25 or
0.75, and twice as often in the former case than in the
latter.

(b) This problem spares S(K )n and T (K )n and affects all
others equally.
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Fig. 2. Ratio power (n = 150)/power (n = 50) for seven goodness-of-fit tests,
as observed across 126 = 7 × 6 × 3 combinations of factors C0, C and τ for
which C0 6= C. The vertical line is at 1.1, to help identify the cases where the
improvement in power is less than 10% when n goes from 50 to 150.

(c) In half of the cases, the problem occurs because
of a failure to distinguish between the Normal and
the Pearson copula; most of the other instances of
low increase in power occur when the null and the
alternative are the Frank and Plackett copulas, or vice
versa.

To illustrate the difficulties associated with the proper
identification of a dependence structure from as small a sample
as n = 50, Fig. 3 portrays typical scatter plots for the
seven copula models considered in the study. For comparative
purposes, τ = 0.5 in all cases. The distinctive features of the
models are hardly distinguishable and would be even fuzzier if
one were to set τ = 0.25.

In contrast, Fig. 4 displays scatter plots of random samples
of size n = 1000 from the same copulas, again with τ =
0.5. The characteristics of the different models are then much
easier to pick out. The Clayton and the Gumbel–Hougaard
are particularly easy to spot: their lower- and upper-tail
dependences translate into greater densities of points in
the lower-left and upper-right corners of the unit square,
respectively.

While a trained eye could perhaps distinguish consistently
between other pairs of copulas at n = 1000, some differences
remain tenuous, e.g., between the Frank and the Plackett, or
between the Normal and the Pearson copulas. Thus the fact that
many of the power figures in Tables 1–3 are low does not come
as a total surprise.

As shown by Genest et al. (2006), goodness-of-fit testing
using S(K )n and T (K )n performs quite well when n = 250. As
they point out, however, these tests are not generally consistent.
In particular, they fail to discriminate bivariate extreme-value
copulas having the same level of dependence, because for any
such model, the theoretical Kendall distribution is K (w) =
w − (1− τ)w log(w) for all w ∈ (0, 1].

6.3. Which test performs best?

As might have been expected, no single test is preferable
to all others, irrespective of the circumstances. It is clear from
Tables 1–3 that the choice of the most powerful test depends

Fig. 3. Samples of size n = 50 from seven different copulas with parameter τ = 0.50. From left to right, and top to bottom: Clayton, Gumbel–Hougaard, Frank,
Plackett, Normal, Student and Pearson with 4 degrees of freedom.
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Fig. 4. Samples of size n = 1000 from seven different copulas with parameter τ = 0.50. From left to right, and top to bottom: Clayton, Gumbel–Hougaard, Frank,
Plackett, Normal, Student and Pearson with 4 degrees of freedom.

on the combination of factors τ , C, and C0. From the additional
tables reported in Beaudoin (2007), a dependence on n is also
evident.

In practice, of course, only the last two factors are known for
sure, i.e., the null hypothesis under investigation and the sample
size. At the expense of mild “data snooping”, one can get also
a fairly good idea of the level of dependence in the data, as
measured by Kendall’s tau. Prior knowledge of the exact nature
of dependence in the data, however, would defeat the purpose
of goodness-of-fit testing.

In order to extract methodological recommendations from
the mass of data contained in Tables 1–3, it is convenient to rank
the tests from 1 to 7 in each of the 126 = 7×6×3 experimental
conditions corresponding to the seven possible choices of C0,
the six alternatives C, and the three values of tau. The sample
size was fixed at n = 150 throughout, as those results are less
subject to random variation and possibly more representative of
situations one would encounter in practice.

Table 4 displays average ranks computed over the
alternatives, for given C0 and τ . In the table, the best test is
highlighted in each of the 21 = 7 × 3 scenarios considered. In
Table 4, the tests are ranked from 1 to 7 in increasing order of
power. Based on the number of times each test had the highest
rank, it appears that:

(1) The best procedures overall are those based on S(B)n , Sn and
S(K )n with 6.5, 5 and 5 “wins”, respectively.

(2) The tests based on S(C)n and An are average with 2.5 and 2
wins, respectively.

(3) The performance of the tests involving Tn and T (K )n is much
less impressive, as they had no victory.

These observations are consistent with the common wisdom
of the goodness-of-fit literature, to the effect that test
statistics based on the Cramér–von Mises functional of a
process tend to be more powerful than those based on the
Kolmogorov–Smirnov distance taken on the same process.

A similar message is conveyed by the average ranks reported
at the bottom of Table 4, which yield the following preference
ranking:

S(B)n � Sn � S(K )n � S(C)n � Tn � An � T (K )n .

Although their differences may not be statistically significant,
these means suggest that the tests based on Tn , An and T (K )n are
much less powerful than the others.

Other salient features of Table 4 are as follows:

(1) Among the tests based on a Cramér–von Mises statistic,
there seems to be little to choose between a construction
involving Cn , Kn or Rosenblatt’s transform. Their averages
are comparable, as are their respective number of wins
(although S(C)n had only 2.5 wins).

(2) The statistic Sn unequivocally yields the most powerful
test of the Clayton hypothesis; it also does quite well for
goodness-of-fit testing of Frank’s model.
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Table 4
Average ranking over factor C of the seven goodness-of-fit tests in 21 = 7× 3 combinations of factors C0 and τ

H0 τ Test based on

Sn Tn S(K )n T (K )n S(B)n S(C)n An

Clayton 0.25 7.0 3.5 3.3 1.8 5.8 5.0 1.5
0.50 7.0 3.2 3.8 2.0 6.0 5.0 1.0
0.75 5.9 3.5 4.0 2.0 5.8 5.8 1.0

Gumbel–Hougaard 0.25 3.6 4.0 7.0 5.6 3.7 2.3 1.8
0.50 3.5 2.8 6.3 3.5 6.2 4.7 1.0
0.75 2.9 2.7 4.8 2.7 6.8 5.8 2.5

Frank 0.25 4.6 3.4 5.3 4.0 2.8 4.0 3.8
0.50 5.3 2.8 5.5 4.0 3.3 5.2 1.8
0.75 5.8 2.3 4.8 2.2 3.6 5.6 3.7

Plackett 0.25 4.2 4.1 4.8 4.2 3.8 2.8 4.3
0.50 4.9 4.3 4.8 3.3 3.9 2.7 4.1
0.75 4.8 5.0 4.6 2.8 3.3 2.3 5.2

Normal 0.25 4.7 3.8 3.7 2.4 5.0 4.8 3.8
0.50 4.3 3.3 4.3 2.8 5.0 4.7 3.7
0.75 4.3 3.2 3.7 2.5 5.5 4.8 4.1

Student 4 dl 0.25 4.6 4.4 4.5 2.6 4.7 1.9 5.3
0.50 4.8 3.9 5.1 3.0 5.7 2.3 3.2
0.75 3.7 3.3 4.2 3.3 5.2 3.5 4.8

Pearson 4 dl 0.25 4.2 2.2 3.1 2.3 5.3 6.5 4.5
0.50 4.8 3.0 3.3 1.8 6.2 6.2 2.7
0.75 4.8 2.3 3.8 1.9 5.8 5.9 3.5

Average 4.75 3.38 4.50 2.89 4.92 4.36 3.21
Standard error 1.04 0.75 0.99 0.96 1.15 1.45 1.39

(3) The test based on S(B)n seems particularly good at detecting
the lack of Normal or Student types of dependence, while
S(C)n is most powerful for the Pearson hypothesis; it would
be interesting to see whether this conclusion extends to
other meta-elliptical copula structures.

(4) Among the tests constructed using the Kendall transform,
the procedure based on S(K )n was far superior and offered
the best performance when testing the goodness-of-fit of
Gumbel–Hougaard and Frank copula structures.

(5) No clear recommendation emerges for goodness-of-fit
testing of the Plackett.

7. Observations and recommendations

Based on the experience gained from carrying out this
comparative power study of the existing blanket goodness-of-
fit tests for copula models, the following general observations
and specific recommendations can be made.

I. General observations:
(a) In goodness-of-fit testing as in any other inferential

context, the greater the sample size, the better. Large
data sets not only help to distinguish between copula
models but play a role in the reliability of the parametric
bootstrap procedures used to approximate the statistics’
null distribution.

(b) In order for the double bootstrap to be efficient, the
number m of repetitions must be substantially larger
than the sample size n. In the present study, m = 2500

was found to be an acceptable minimum. While this
is not a problem when using a test once, it quickly
becomes computationally demanding in the context of
a simulation study. In the present case, the recourse to a
double bootstrap whenever Cθ or Kθ was not available
in closed form made it totally impractical to run the
experiment at a sample size of n = 250, for lack of
sufficient computing resources.

(c) In this regard, the tests based on An , S(B)n and S(C)n
are at an advantage: because they rely on Rosenblatt’s
transform, a single bootstrap is enough to approximate
their null distribution and extract P-values. However,
the value of these statistics depends on the order in
which the variables are successively conditioned. While
it is traditional to take U2|U1, U3|(U1,U2), . . . as in (5),
any other sequence could be used. Different decisions
could possibly ensue. (This point will need to be the
object of future research.)

(d) When statistics based on Cramér–von Mises and
Kolmogorov–Smirnov functionals of the same empirical
process are compared, the former are almost invariably
more powerful. The present simulations and those
reported earlier by Genest et al. (2006) both point
strongly in that direction.

II. Specific recommendations, based on the present state of
knowledge:
(a) Overall, statistics Sn and S(B)n yield the best blanket

goodness-of-fit test procedures for copula models.
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While S(B)n is slightly more consistent than Sn in its
performance across models and can be implemented
without ever calling upon a double bootstrap, it relies
on a nonunique (and therefore somewhat arbitrary)
Rosenblatt transform.

(b) Statistics S(C)n and S(K )n are also recommendable, and the
latter is especially convenient when the null hypothesis
is Archimedean, since the Kendall distribution K is then
available in closed form.

(c) The jury is still out on the merits of the test based on
An . Anderson–Darling type statistics have proved useful
in many other contexts, particularly in circumstances
where differences in the tail of a distribution were
deemed to be important. While it seems plausible that
the same would hold in a copula context, the simulation
results are not convincing in this regard. The asymptotic
behavior of this statistic also remains to be studied.

(d) There are no strong arguments in favor of using the tests
based on Tn or T (K )n . As for the uncorrected version of
the test proposed by Breymann et al. (2003), it should
never be used.

In future work, it would be interesting to investigate the
sensitivity of tests based on the Rosenblatt transform to the
order in which conditioning is done. It would also be useful to
expand the present study to include comparisons with general
goodness-of-fit tests involving tuning parameters, as well as
with procedures developed to test for specific dependence
structures such as the Clayton or the Normal copula.

On the theoretical front, several of the procedures that
have been proposed recently for goodness-of-fit testing of
copula models remain on shaky grounds. As illustrated by
the appalling performance of the test proposed by Breymann
et al. (2003), the dependence between pseudo-observations
must imperatively be taken into account.

Nontrivial mathematics are required before one can
conclude (or not) that the limiting distribution of a rank-based
statistic is the same as in the classical multivariate context
in which it was originally developed. Furthermore, conditions
are required for the convergence of bootstrap algorithms, and
failure to check them may lead to disaster. No sleight of hand
will change that fact.
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Appendix A. A parametric bootstrap for Sn and Tn

The following procedure leads to an approximate P-value
for the test based on Sn . The adaptations required for Tn or any
other rank-based statistic are obvious.

(1) Compute Cn as per formula (1) and estimate θ with θn =

Tn (U1, . . . ,Un).
(2) If there is an analytical expression for Cθ , compute the

value of Sn , as defined in (2). Otherwise, proceed by Monte
Carlo approximation. Specifically, choose m ≥ n and carry
out the following extra steps:
(a) Generate a random sample U∗1, . . . ,U∗m from distribu-

tion Cθn .
(b) Approximate Cθn by

B∗m(u) =
1
m

m∑
i=1

1
(
U∗i ≤ u

)
, u ∈ [0, 1]d .

(c) Approximate Sn by

Sn =

n∑
i=1

{
Cn (Ui )− B∗m (Ui )

}2
.

(3) For some large integer N , repeat the following steps for
every k ∈ {1, . . . , N }:
(a) Generate a random sample Y∗1,k, . . . ,Y∗n,k from

distribution Cθn and compute their associated rank
vectors R∗1,k, . . . ,R∗n,k .

(b) Compute U∗i,k = R∗i,k/(n+ 1) for i ∈ {1, . . . , n} and let

C∗n,k(u) =
1
n

n∑
i=1

1
(
U∗i,k ≤ u

)
, u ∈ [0, 1]d

and estimate θ by θ∗n,k = Tn(U∗1,k, . . . ,U∗n,k).
(c) If there is an analytical expression for Cθ , let

S∗n,k =
n∑

i=1

{C∗n,k
(
U∗i,k

)
− Cθ∗n,k

(
U∗i,k

)
}
2.

Otherwise, proceed as follows:
(i) Generate a random sample Y∗∗1,k, . . . ,Y∗∗m,k from

distribution Cθ∗n,k .
(ii) Approximate Cθ∗n,k by

B∗∗m,k(u) =
1
m

m∑
i=1

1
(
Y∗∗i,k ≤ u

)
, u ∈ [0, 1]d

and let

S∗n,k =
n∑

i=1

{
C∗n,k

(
U∗i,k

)
− B∗∗m,k

(
U∗i,k

)}2
.

An approximate P-value for the test is then given by∑N
k=1 1(S∗n,k > Sn)/N .

Appendix B. A parametric bootstrap for S(K )
n and T (K )

n

For the sake of simplicity, the following algorithm is
described in terms of statistic S(K )n . However, it is also valid
mutatis mutandis for T (K )n or any other rank-based statistic.

(1) Compute Kn as per formula (3) and estimate θ with θn =

Tn (U1, . . . ,Un).
(2) If there is an analytical expression for Kθ , compute the

value of S(K )n , as defined in (4). Otherwise, proceed by
Monte Carlo approximation. Specifically, choose m ≥ n
and carry out the following extra steps:
(a) Generate a random sample U∗1, . . . ,U∗m from distribu-

tion Cθn .



Author's personal copy

212 C. Genest et al. / Insurance: Mathematics and Economics 44 (2009) 199–213

(b) Approximate Kθn by

B∗m(t) =
1
m

m∑
i=1

1
(
V ∗i ≤ t

)
, t ∈ [0, 1],

where

V ∗i =
1
m

m∑
j=1

1
(

U∗j ≤ U∗i
)
, i ∈ {1, . . . ,m}.

(c) Approximate S(K )n by

S(K )n =
n

m

m∑
i=1

{
Kn
(
V ∗i
)
− B∗m

(
V ∗i
)}2

.

Note in passing that m × B∗m(V
∗

i ) is the rank of V ∗i
among V ∗1 , . . . , V ∗m .

(3) For some large integer N , repeat the following steps for
every k ∈ {1, . . . , N }:
(a) Generate a random sample Y∗1,k, . . . ,Y∗n,k from

distribution Cθn and compute their associated rank
vectors R∗1,k, . . . ,R∗n,k .

(b) Compute

V ∗i,k =
1
n

n∑
j=1

1
(

Y∗j,k ≤ Y∗i,k
)
, i ∈ {1, . . . , n}

K ∗n,k(t) =
1
n

n∑
i=1

1
(
V ∗i,k ≤ t

)
, t ∈ [0, 1]

and estimate θ by θ∗n,k = Tn{R∗1,k/(n + 1), . . . ,R∗n,k/
(n + 1)}.

(c) If there is an analytical expression for Kθ , let

S(K )∗n,k =

∫ 1

0
{C∗n,k(t)− Kθ∗n,k (t)}

2dKθ∗n,k (t),

for which an explicit expression can easily be deduced
from (4). Otherwise, proceed as follows:
(i) Generate a random sample Y∗∗1,k, . . . ,Y∗∗m,k from

distribution Cθ∗n,k .
(ii) Approximate K ∗θn,k

by

B∗∗m,k(t) =
1
m

m∑
i=1

1
(
V ∗∗i,k ≤ t

)
, t ∈ [0, 1],

where

V ∗∗i,k =
1
m

m∑
j=1

1
(

Y∗j,k ≤ Y∗i,k
)
, i ∈ {1, . . . ,m}.

Then set

S(K )∗n,k =
n

m

m∑
i=1

{
K ∗n,k

(
V ∗i,k

)
− B∗∗m,k

(
V ∗i,k

)}2
,

where m × B∗∗m,k(V
∗

i,k) is the rank of V ∗i,k among
V ∗1,k, . . . , V ∗m,k .

An approximate P-value for the test is then given by∑N
k=1 1(S(K )∗n,k > S(K )n )/N .

Appendix C. A parametric bootstrap for An

Although the following algorithm is described in terms of
statistic An , it is also valid mutatis mutandis for any other rank-
based statistic based on χ1, . . . , χn .

(1) Compute Gn as per formula (6) and estimate θ with θn =

Tn (U1, . . . ,Un).
(2) Compute the value of An as per formula (7).

(3) For some large integer N , repeat the following steps for
every k ∈ {1, . . . , N }:
(a) Generate a random sample Y∗1,k, . . . ,Y∗n,k from

distribution Cθn and compute their associated rank
vectors R∗1,k, . . . ,R∗n,k .

(b) Compute U∗i,k = R∗i,k/(n + 1) for i ∈ {1, . . . , n}.
(c) Estimate θ with θ∗n,k = Tn(U∗1,k, . . . ,U∗n,k), and

compute χ∗1,k, . . . , χ
∗

n,k , where

χ∗i,k =

d∑
j=1

{
Φ−1(E∗i j,k)

}2
and E∗i,k = Rθ∗n,k

(
U∗i,k

)
,

i ∈ {1, . . . , n}.
(d) Let

G∗n,k(t) =
1
n

n∑
i=1

1
(
χ∗i,k ≤ t

)
, t ≥ 0

and define

A∗n,k = −n −
1
n

n∑
i=1

(2i − 1) · [log{G(χ∗(i),k)}

+ log{1− G(χ∗(n+1−i),k )}].

An approximate P-value for the test is then given by∑N
k=1 1(A∗n,k > An)/N .

Appendix D. A parametric bootstrap for S(C)
n and S(B)

n

The following algorithm is described in terms of statistic
S(C)n . However, it is also valid mutatis mutandis for S(B)n or any
other rank-based statistic.

(1) Compute Dn as per formula (8) and estimate θ by θn =

Tn (U1, . . . ,Un).
(2) Compute the value of S(C)n , as defined in (9).
(3) For some large integer N , repeat the following steps for

every k ∈ {1, . . . , N }:
(a) Generate a random sample Y∗1,k, . . . ,Y∗n,k from

distribution Cθn and compute their associated rank
vectors R∗1,k, . . . ,R∗n,k .

(b) Compute U∗i,k = R∗i,k/(n + 1) for i ∈ {1, . . . , n}.
(c) Estimate θ by θ∗n,k = Tn(U∗1,k, . . . ,U∗n,k) and compute

E∗1,k, . . . ,E∗n,k , where
E∗i,k = Rθ∗n,k

(
U∗i,k

)
, i ∈ {i, . . . , n}.

(d) Let

D∗n,k(u) =
1
n

n∑
i=1

1
(
E∗i,k ≤ u

)
, u ∈ [0, 1]d

and set

S(C)∗n,k =

n∑
i=1

{
D∗n,k

(
E∗i,k

)
− C⊥

(
E∗i,k

)}2
.

An approximate P-value for the test is then given by∑N
k=1 1(S(C)∗n,k > S(C)n )/N .
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